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Abstract We further develop and utilize a previously described optimal design framework
to investigate an oscillatory system of 16 states which simulates the circadian rhythm and
intertwined positive and negative regulatory loops of Per, Cry, Bmal1, and Clock genes in
mammals. We illustrate use of a subset selection methodology with experimental perturba-
tions in order to increase and possibly maximize the amount of information gained from lon-
gitudinal data derived from such experiments. We demonstrate that optimizing experimental
perturbations may substantially decrease uncertainty in estimating model parameters.
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1 Introduction

Current efforts in modeling the host immune response to HIV infection and RNA3
recruitment in the Brome Mosiac Virus (BMV) replication cycle have elucidated the
relationship between disturbances that drive biological systems away from equilibrium
and information content in such perturbations [2, 1]. For instance, the BMV model
developed by Banks, et al. [4, 1] describes how experimental input manipulation can
produce non-equilibrium system dynamics, which leads to a greater information con-
tent in collected data. The findings in [1] suggest that input manipulation is a powerful
tool for reducing standard errors in parameter estimates. In the HIV model developed
by Banks, et al. [2], anti-retroviral therapy (ART) drives viral load in patients toward
an equilibrium level that is undetectable by ultra-sensitive assays. When ART is in-
terrupted, often due to patient negligence, the HIV model converges to an equilibrium
with high viral load. One of the results of [2] was that as the authors fit the HIV
model to clinical patient data, the number of HIV model parameters that could be
easily estimated with high statistical confidence increased with the number of treat-
ment interruptions. Thus, non-equilibrium dynamics induced by ART perturbations
increased the data information content as calculated through asymptotic standard er-
rors for estimated model parameters.

In this paper, we look at the effects on parameter estimation that results from per-
turbing a dynamic system away from its oscillatory steady state. We hypothesize that
disturbing an oscillatory system away from equilibrium yields better information for pa-
rameter estimation than an unaltered or undisturbed system, as evidenced by providing
more statistical certainty in parameters for the model. To investigate this, we analyzed
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a mathematical model describing the regulation of genes involved in mammalian circa-
dian rhythms. The expression of these genes can be inhibited through silencing their
respective mRNAs. This permits the researcher to effectively negate the expression
of a certain gene, thereby perturbing the system away from its periodic equilibrium.
We employed an optimal experimental design theory framework described in [1], and
further developed the algorithm to minimize parameter standard errors by choosing
optimal times to perturb the model away from its dynamic equilibrium. Variations
on the observation frequency and length of experiment are analyzed in the context of
this algorithm, as well as the number of possible perturbations allowed. We report
how optimization of experimentally controlled inputs, i.e., RNA inhibition (RNAi), for
the circadian system can lead to a substantial decrease in standard errors for model
parameters, thereby increasing the levels of certainty in parameters for the model.

2 Mathematical model

2.1 Circadian rythms model

The mathematical model of circadian rythms we used was previously developed in [9];
it is an oscillatory system of 16 state variables desribing a regulatory network of the
Per, Cry, Bmal1, and Clock genes in mammals. Of the four parameter sets presented
in [9], parameter set 1 of the model, described in Tables 1 and 2 of this paper and
Table 2 of [9], models the protein and mRNA levels of the aforementioned genes in
continuous darkness, which gives rise to the desired sustained circadian oscillations.
The mechanism of circadian oscillation relies on the formation of an inactive complex
between PER and CRY and the activators CLOCK and BMAL1 that enhance Per and
Cry expression [9]. The occurence and period of these oscillations are generally most
sensitive to parameters related to synthesis or degradation of Bmal1 mRNA or BMAL1
protein. The developers of this model concluded that sustained oscillations might arise
from the sole negative autoregulation of Bmal1 expression. When the researchers in-
tegrated light-induced expression of the Per gene, the model accounted for rhythmic
regulation of the oscillations by the light-dark cycle. Given the sustained oscillations
of the model at steady state as well as the large number of system parameters, we
found the model appropriate for assessing the impact of perturbing an oscillatory sys-
tem away from the dynamic equilibrium on the uncertainty associated with estimating
model parameters. The equations have been grouped by mRNAs, the phosphorylated
and non-phosphorylated PER-CRY complex in the cytosol and nucleus, the phospho-
rylated and non-phosphorylated protein BMAL1 in the cytosol and nucleus, and the
complex between PER-CRY and CLOCK-BMAL1 in the nucleus. The model, as de-
veloped in [9], is as follows:

(a) mRNAs of Per, Cry, and Bmal1:

dMP

dt
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Bn
N

Kn
AP +Bn

N

− vmP
MP

KmP +MP

− kdmpMP , (1)



Optimal Design for Minimizing Uncertainty in Dynamic Equilibrium Systems 25

dMC

dt
= vsC

Bn
N

Kn
AC +Bn

N

− vmC
MC

KmC +MC

− kdmcMC , (2)

dMB

dt
= vsB

Km
IB

Km
IB +Bm

N

− vmB
MB

KmB +MB

− kdmbMB. (3)

(b) Phosphorylated and non-phosphorylated proteins PER and CRY in the cytosol:
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(c) Phosphorylated and non-phosphorylated PER-CRY complex in the cytosol and
nucleus:
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(d) Phosphorylated and non-phosphorylated protein BMAL1 in the cytosol and
nucleus:

dBC

dt
= ksBMB − V1B
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(e) Inactive complex between PER-CRY and CLOCK-BMAL1 in the nucleus:

dIN
dt

= −k8IN + k7BNPCN − vdIN
IN

Kd + IN
− kdnIN . (16)

Definitions of all the parameters used in these equations are in Tables 1 and 2.
In Equations (1)-(16), concentrations are defined with respect to total cell volume.
The initial conditions for this system are IC = {0, 0, 8.7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
all are zero except the amount of Bmal1 mRNA. The concentration of every protein
species (single or complex) is denoted by a subscript C,N,CP, or NP for the cytosolic,
nuclear, cytosolic phsophorylated or nuclear phosphorylated form, respectively.

Due to the substantial number of parameters present in the model and the com-
binatorial nature of the parameter subset selection method detailed in Section 2, we
first had to reduce the number of parameters that were assumed to be estimated. In
[9], the authors state that many parameter values remain to be determined experi-
mentally, and that the oscillations created were obtained for a semi-arbitrary choice
of parameter values in a physiologically realistic range. Given the somewhat arbi-
trariness of the parameter values and the implied difficulty of experimental estima-
tion, we selected parameters based on mathematical type and biological significance.
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Parameter Definition Values
k1(h

−1) Rate constant for entry of the PER-CRY complex into the
nucleus

0.4

k2(h
−1) Rate constant for exit of the PER-CRY complex from the

nucleus
0.2

k3(nM
−1h−1) Rate constant for the formation of the PER-CRY complex 0.4

k4(h
−1) Rate constant for dissociation of the PER-CRY complex 0.2

k5(h
−1) Rate constant for entry of the BMAL1 protein into the nu-

cleus
0.4

k6(h
−1) Rate constant for exit of the BMAL1 protein from the nu-

cleus
0.2

k7(nM
−1h−1) Rate constant for the formation of the inactive PER-CRY-

CLOCK-BMAL1 complex
0.5

k8(h
−1) Rate constant for the dissociation of the PER-CRY-

CLOCK-BMAL1 complex
0.1

KAP (nM) Activation constant for enhancement of Per expression by
nuclear BMAL1

0.7

KAC(nM) Activation constant for enhancement of Cry expression by
nuclear BMAL1

0.6

KIB(nM) Inhibition constant for repression of Bmal1 expression by
nuclear BMAL1

2.2

kdmb(h
−1) Nonspecific degradation rate constant for Bmal1 mRNA 0.01

kdmc(h
−1) Nonspecific degradation rate constant for Cry mRNA 0.01

kdmp(h
−1) Nonspecific degradation rate constant for Per mRNA 0.01

kdnc(h
−1) Nonspecific degradation rate constant for cytosolic non-

phosphorylated CRY
0.12

kdn(h
−1) Nonspecific degradation rate for other protein species 0.01

Kd(nM) Michaelis constant for protein degradation 0.3
Kdp(nM) Michaelis constant for protein dephosphorylation 0.1
KP (nM) Michaelis constant for protein phosphorylation 0.1
KmB(nM) Michaelis constant for degradation of Bmal1 mRNA 0.4
KmC(nM) Michaelis constant for degradation of Cry mRNA 0.4
KmP (nM) Michaelis constant for degradation of Per mRNA 0.31
kstot(h

−1) Rate constant for protein synthesis 1.0
ksB(h

−1) Rate constant for synthesis of BMAL1 0.12 kstot
ksC(h

−1) Rate constant for synthesis of CRY 1.6 kstot
ksP (h

−1) Rate constant for synthesis of PER 0.6 kstot
n Degree of cooperativity of activation of Per and Cry expres-

sion by BMAL1
4

m Degree of cooperativity of repression of Bmal1 expression
by BMAL1

2

Table 1: Parameters for the circadian rhythm model.

We also tried to select parameters that would represent a varying degree of sensi-
tivity, and gathered this sensitivity information based on the values in Table 2 of
[9]. Parameters k1 through k8 are all rate constants for the protein complexes de-
scribed in the model, and act as decay or growth rates. Parameters KAP , KAC , and
KIB describe the activation or inhibition of mRNA’s by nuclear BMAL1, and ap-
pear in the model as Michaelis-Menten constants. Parameters Kd, Kdp, KP , KmB, KmC

and KmP are all Michaelis-Menten constants for proteins and mRNA’s, and describe
either degradation or phosphorylation processes. The parameter set that we ap-
ply the subset selection algorithm, developed in [3] and employed in [2, 1], is P =
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Parameter Definition Values
Vphos(nMh−1) Phosphorylation rate 0.4
V1B(nMh−1) Maximum rate of cytosolic BMAL1 phosphorylation 0.5
V1C(nMh−1) Maximum rate of cytosolic CRY phosphorylation 0.6
V1P (nMh−1) Maximum rate of cytosolic PER phosphorylation Vphos

V1PC(nMh−1) Maximum rate of phosphorylation of cytosolic PER-CRY
complex

Vphos

V2B(nMh−1) Maximum rate of cytosolic BMAL1 dephosphorylation 0.1
V2C(nMh−1) Maximum rate of cytosolic CRY dephosphorylation 0.1
V2P (nMh−1) Maximum rate of cytosolic PER dephosphorylation 0.3
V2PC(nMh−1) Maximum rate of cytosolic PER-CRY complex dephospho-

rylation
0.1

V3B(nMh−1) Maximum rate of nuclear BMAL1 phosphorylation 0.5
V3PC(nMh−1) Maximum rate of phosphorylation of nuclear PER-CRY

complex
Vphos

V4B(nMh−1) Maximum rate of nuclear BMAL1 dephosphorylation 0.2
V4PC(nMh−1) Maximum rate of dephosphorylation of nuclear PER-CRY

complex
0.1

vdBC(nMh−1) Maximum rate of degradation of cytosolic phosphorylated
BMAL1

0.5

vdBN (nMh−1) Maximum rate of degradation of nuclear phosphorylated
BMAL1

0.6

vdCC(nMh−1) Maximum rate of degradation of cytosolic phosphorylated
CRY

0.7

vdIN (nMh−1) Maximum rate of degradation of nuclear PER-CRY-
CLOCK-BMAL1 complex

0.8

vdPC(nMh−1) Maximum rate of degradation of cytosolic phosphorylated
PER

0.7

vdPCC(nMh−1) Maximum rate of degradation of cytosolic phosphorylated
PER-CRY complex

0.7

vdPCN (nMh−1) Maximum rate of degradation of nuclear phosphorylated
PER-CRY complex

0.7

vmB(nMh−1) Maximum rate of Bmal1 mRNA degradation 0.8
vmC(nMh−1) Maximum rate of Cry mRNA degradation 1.0
vmP (nMh−1) Maximum rate of Per mRNA degradation 1.1
vsTot(nMh−1) Maximum transcription rate 1.0
vsB(nMh−1) Maximum rate of Bmal1 mRNA synthesis vsB
vsC(nMh−1) Maximum rate of Cry mRNA synthesis 1.1 vsB
vsP (nMh−1) Maximum rate of Per mRNA synthesis 1.5 vsB

Table 2: Parameters for the circadian rhythm model.

{k1, k2, k3, k4, k5, k6, k7, k8, KAP , KAC , KIB, kdn, Kd, Kdp, KP , KmB, KmC , KmP},
which amounts to 18 out of the 55 total model parameters. According to [9], the
parameter set P yields a diverse range of sensitivities, letting us observe the effects
of the optimization algorithm on parameters with a variable amount of influence on
the model solution. Reducing the number of parameters that will undergo the subset
selection algorithm will also decrease the computational time to reasonable levels. The
goal of using the circadian rythm model as an example is to demonstrate that perturb-
ing an system with a dynamic equilibria can yield a data set with better information
for parameter estimation than an unaltered or undisturbed system, thereby increasing
statistical certainty in parameters estimated for the model. To create perturbations



Optimal Design for Minimizing Uncertainty in Dynamic Equilibrium Systems 29

in the dynamic equilibria, we first developed a model for a experimental perturbation
using mRNA inhibition (RNAi) based on biological principles.

2.2 Model for system perturbations using RNAi

We model the RNA inhibiter (RNAi) by introducing an additional state variable r that
represents the concentration of exogenously spawned small interfering RNAs (siRNA’s)
that can inhibit a target mRNA post-transcriptionally. The intracellular concentration
of siRNA is modeled by the equation

dr

dt
= u(t)ron − rdr. (17)

The function u(t) is a piecewise constant function with range in {0, 1} that represents
whether the RNAi is on or off for each of H time intervals [tbi−1, tbi ], i = 1, . . . , H. The
function u(t) signifies whether the RNAi is active (= 1) or inactive (= 0) in certain
intervals of time. The parameter ron represents the rate of siRNA influx into cells and
rd is the siRNA exponential decay rate. The constant rd was taken to be 2 hours−1
as described in [11]. Due to the lack of literature on the value of ron, we assume it
is equal to 4 (concentration/hour), as this represents a seemingly reasonable rate of
siRNA influx. It is assumed there is initially no silencer in the system (r(0) = 0). To
simulate the effect of RNAi in the model, we had the RNAi influence the removal rate
of the Per mRNA.

The description of RNAi was inserted into Equation (1) by creating a (1+mrr) term
and multiplying it by the decay rate kdmpMP . Here, mr is the mass action interaction
rate between r and Mp. The modified equation for Per mRNA is now

dMp

dt
= vsP

Bn
N

Kn
AP +Bn

N

− vmP
MP

KmP +MP

− kdmp(1 +mrr)MP , (18)

where mr is taken to be 10. It is important to note that while this may seem a high
value, for simplification we did not want to affect more than one mRNA removal rate,
and thus needed a slightly larger value to obtain a reasonable perturbation magni-
tude. Thus, we have implemented a state that will increase the rate at which Per
mRNA is removed, and in combination with the function u(t), effectively introduces
perturbations into the system.

2 Optimal experimental design theory

2.1 Uncertainty quantification with asymptotic theory

We employed asymptotic theory in order to quantify parameter uncertainty within an
optimal experimental design framework. Below, we formulate a Fisher Information
Matrix, i.e., from asymptotic theory, for a given assumed level of observation noise
and a function describing system perturbations, i.e., u(t). In the model above (specif-
ically Equation (18)), the function u(t) is assumed to be known as it is controlled by
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the experimenter. With the addition of the RNAi, we can write the circadian model
generally as

d~x

dt
(t) = ~g(t, ~x(t; q̂, u(t)), q̂, u(t)), t ∈ [t0, tf ],

~x(t0) = ~x0, ~f(t; q̂, u(t)) = C~x(t; q̂, u(t))

(19)

where ~x0 are given fixed initial conditions, ~x(t; q̂, u(t)) is the vector of state variables
of the system time point t and parameter vector q̂ ∈ Rp, with p = 18 “estimated”
parameters P from the total set of 55 model parameters from Tables 1 and 2. The initial
time and final time are designated t0 and tf , respectively. Let P1([t0, tf ]) denote the
set of all bounded distributions on the interval [t0, tf ]. The set of functions describing
RNAi perturbations we use is the set of piecewise constant functions with a domain
[t0, tf ] that is divided into H intervals with variable length, and with a range in {0, 1}.
Specifically, let S = {s = (s0, s1, . . . , sH) ∈ RH+1|si < si+1 for i = 0, . . . , H − 1} and
let B = ZH

2 . Then the perturbation function is defined in a piecewise constant fashion
as u(t) := u(t; b, s) = bi for t ∈ [si−1, si], i = 1, . . . , H, where b ∈ B and s ∈ S. Thus
the set U ' B × S contains all of the admissible perturbation functions u(t; b, s). Let
P2(U) represent the set of all bounded distributions P2(u) on U . Then the Generalized
Fisher Information Matrix (GFIM) may be written

F(P1,P2, q̂) =

∫ tf

t0

∫
ZH
2

∇T
q̂
~f(t; q̂, u(t))

(
V −10 (t)

)
∇q̂

~f(t; q̂, u(t))dP2(u)dP1(t). (20)

Here q̂ = q̂0 is the assumed “true” parameter vector with the corresponding statistical
error model (see Section 3.2.2 of [6]), which we assume to be constant, given by

~Y (t) = ~f(t; q̂, u(t)) + Ẽ(t), (21)

where ~f(t; q̂, u(t))∈R6 and the Ẽ(t) are independent and identically distributed with
zero mean and covariance matrix given by V0(t).

We consider the case of observations collected at discrete times where we choose
a set of n time points τ = {tj}, j = 1, 2, . . . , n, and t0 = t1 < t2 < · · · < tn = tf .
The corresponding discrete p× p Fisher information matrix (FIM) for a perturbation
function u(t; b, s) measured at discrete times τ is

F (τ, u, q̂) =
n∑

j=1

∇T
q̂
~f(tj; q̂, u(tj; b, s))

(
V −10 (tj)

)
∇q̂

~f(tj; q̂, u(tj; b, s)). (22)

Here, V0 is taken to be the 6× 6 diagonal matrix V0 = diag(σ2, ..., σ2) and we assume
for these calculations that the variance is equal to a constant value of σ2 = 1 for all
states. The values in the sensitivity matrices ∇q̂

~f(tj; q̂, u(tj)) were calculated using the
complex-step derivative method (see Section 2.2) and the parameters q̂ supplied in
P from those in Tables 1 and 2. Indeed, throughout we tacitly assume that these q̂
resulted from a prior best fit parameters to data. The choice of optimal design criteria
is given by the minimization of a functional J (F) : Rp×p → R+; we utilize SE-optimal
design, introduced in [5]. For any component qk of the estimated parameter vector q̂,
the standard error (SEk) is computed by methods of asymptotic theory [7] that rely
on the Fisher Information Matrix (Equation (22)).
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2.2 Complex-step derivative method for calculating sensitivi-
ties

We briefly describe the complex-step derivative (see [10] for details) used to calculate an
approximation for the sensitivities of the six species seen in Figure 2 of [9] with respect
to model parameters. These species are: MP , the mRNA of Per ; MC , the mRNA
of Cry ; MB, the mRNA of Bmal1; CTot, the total amount of CRY; PTot, the total
amount of PER, and BTot, the total amount of BMAL1. Essentially, the complex-step
derivative is a finite-difference approximation calculated in the complex plane. Recall
the forward-difference formula, wherein a common estimate for the first derivative of a
scalar function f(x) is

f ′(x) =
f(x+ h)− f(x)

h
+ o(h), (23)

where h is the finite-difference interval and o(h) is the truncation error for the first-order
approximation. Consider a function f = u + iv of the complex variable z = x + iy.
Paraphrasing [10], if f is analytic in the complex plane then the Cauchy-Riemann
equations apply and are given by

∂u

∂x
=
∂v

∂y
(24)

∂u

∂y
= −∂v

∂x
. (25)

Equations (24) and (25) give the relationship between the real and imaginary parts of
the function. We can use the definition of a derivative in the right hand side of the
first Cauchy-Riemann Equation (24) to write

∂u

∂x
= lim

h→0

v(x+ i(y + h))− v(x+ iy)

h
, (26)

where h is a real number. Since the Equations (1)-(16) are real functions of real
variables, y = 0, u(x) = f(x), and v(x) = 0. Equation (26) can be rewritten as

∂f

∂x
= lim

h→0

Im[f(x+ ih)]

h
(27)

and approximated by

∂f

∂x
≈ Im[f(x+ ih)]

h
. (28)

The value of h is taken to be very small, e.g., h = 10−50. This is the complex-step
derivative approximation, and is not subject to subtractive cancellation errors since
there is no difference operation [10]. This method was implemented for each of the 18
parameters selected and the 6 states described above. This method is used to calculate
partial derivatives for the Fisher Information Matrix as defined in [7].
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2.3 Optimal experimental design algorithm

The algorithm is initialized with an unoptimized or naive experimental design described
by u(t; b, s), which depends on s, an ordered set of H on/off intervals, and a binary
vector b ∈ ZH

2 . The naive experimental design corresponds to b = ~0. For our results
below, the vector s was initialized (as s∗) using periodic spacing between the initial and
final experiment times, t0 and tf , respectively. The experimental designs we consider
here are for a fixed set of observation times τ , which will consist of periodic observations
(every 1 or 3 hours) between t0 and tf . We note that optimization of the observation
times τ in addition to the experimental perturbation function u(t; b, s) may also be
considered in future work and have been investigated elsewhere [1]. We also note that
the algorithm we use here is different from that developed in [1], since we optimize
rather than fix the time intervals defined by s. Calculating the optimal u(t; b, s) requires
nonlinear optimization of H−1 time points, i.e., the boundary of the intervals defining
the piecewise constant function, and 2H possible input vectors for a total of H−1+2H

dimensions. Instead of this computationally intensive procedure, we iteratively solve

b∗ = argmin
{b|Pu∈P2(U),s=s∗}

J (F (τ, u(t; b, s), q̂)) (29)

and
s∗ = argmin

{b|Pu∈P2(U),b=b∗}
J (F (τ, u(t; b, s), q̂)) (30)

by computing the sum of the normalized standard errors for the parameters in P (SE-
optimal design presented in [5]) for all b ∈ ZH

2 , and by using using fminsearch in
Matlab (The Mathworks, Natick, MA), respectively. The minimum sum is chosen, and
the process iterates with the chosen b and s to define the new perturbation function
u(t; b, s) for the experimental design. When the same b and s are selected twice in a
row, it is assumed that these values define the optimal perturbation function. This
optimal perturbation function is then used to produce uncertainty quantification plots
using the parameter subset selection procedure.

2 Parameter subset selection algorithm

The parameter subset selection algorithm of [3, 8] was implemented in [2], and can
be used to better understand how many parameters a data set may support for a
given level of observation error. The algorithm selects a parameter subset based on
minimizing the sum of normalized standard errors (selection score) for a certain number
of estimated parameters np. If we have a set of size p chosen from a set of parameters
q̂ (for this model p = 18), and a number np ≤ p, the subset selection algorithm finds a
subset of parameters of size np that minimizes a selection score as described in [3]. To
implement this procedure one first needs a set of parameter estimates {q̂1, ..., q̂p}, with
corresponding standard errors {SE1, ..., SEp}. One then introduces the coefficients of
variation for q̂i

ν(q̂i) =
SEi

q̂i
, i = 1, . . . , np, (31)
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and calculates a selection score given by the Euclidean norm
in Rnp of ν(q̂) =

(
ν(q̂1), . . . , ν(q̂np)

)T , i.e.,
α(q̂) = |ν(q̂)|,

as an uncertainty quantification for the estimates q̂. The components of the vector
ν(q̂) are the ratios of each standard error for a parameter to the corresponding nominal
parameter value. These ratios are dimensionless numbers warranting comparison even
when parameters have considerably different scales and units; thus, they are compared
graphically on a logarithmic scale. Graphs such as Figure 2 below plot the v(q̂i) for
each parameter (y-axis) for np = 1, ..., 18 (x-axis).

2 Results
We sought to determine whether optimizing system perturbations could improve confi-
dence in parameters estimated for a system with a dynamic (i.e., periodic) equilibrium,
using the circadian rhythms model as a test example. Below, we analyzed forward solu-
tions and uncertainty quantification plots resulting from the parameter subset selection
algorithm using a naive or optimal experimental design for several different choices of
the final experiment time (tf ), the observation frequency, and the number of possi-
ble perturbations (H). The sensitivity matrix is evaluated at the discrete time points
determined by the observation frequency. The forward solutions are presented in a
similar style to those in Figure 2 of [9], where the total amount of Per, Cry, and Bmal1
mRNAs and PER, CRY, and BMAL1 proteins are presented. The parameter subset
selection graphs are the plots of the normalized standard errors for each parameter
in the set P . It is important to note that the subset selection algorithm does not
re-estimate parameters when minimizing the selection score; the Fisher Information
Matrix is calculated only once, from which respective rows and columns are removed
to calculate standard errors. We note that re-estimation following the application of
the subset selection algorithm was tested in [2] and proved to make only negligible
differences in the results. We define a threshold at which parameter uncertainty can
be taken as reasonable by setting an upper bound on the normalized standard error
for each parameter in a given subset; this bound ensures that every 95% confidence
interval is narrower than the parameter estimate itself. This value is represented by
the horizontal (red) line in the subset selection graphs with the value 1

1.96
= 0.5102, as

presented in [2].
For reference, we plotted the forward solution of the model using the parameter set

in Tables 1 and 2 without any optimized interruptions, i.e., using a naive experimental
design (Figure 1). The forward solution is plotted for 0-72 hours as in [9] with an
observation frequency of 3 hours.
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Figure 1: The forward solution of the circadian model for the Per, Cry, and Bmal1 (B)
mRNAs and PER, CRY, and BMAL1 (B) proteins from 0-72 hours with the observation
frequency equal to 3 hours. In the left figures, solid lines represent Cry while dashed
lines are Per. Forward solutions are calculated at discrete observation time points
(every 3 hours) and plotted as (*), with connecting lines shown for clarity.
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2.1 Optimal Experimental Design: tf = 72 hrs, observation fre-
quency = 3 hrs, H = 3

We first investigated whether introducing RNAi perturbations, calculating using our
optimal experimental design algorithm (Equations (29) - (30)), could have an affect
on reducing parameter uncertainty. We implemented our optimization algorithm using
an experimental time of 72 hours, an observation frequency of 3 hours, and 3 time
intervals for possible RNAi activation/deactivation (H = 3). Using 3 possible per-
turbation intervals, we found that the optimal time mesh s and perturbation vector
b corresponding to the function u(t; b, s) were equal to {0, 16.8410, 47.0857, 72} and
{0, 1, 0}, respectively. Figure 2 (top) displays the naive experimental design results
with comparison to the optimized experimental design results (bottom) with regard to
parameter uncertainty as calculated using the subset selection algorithm. As stated
previously, all of the parameter subset selection graphs were plotted on a logarith-
mic scale due to the substantial difference of the normalized standard errors (NSEs).
Specifically, the NSEs for each parameter were calculated using a parameter subset
selection algorithm and are plotted log10 scale for np = 1, ..., 18 chosen parameters.

We found that an optimized experimental design produced improvement in parame-
ter uncertainty. The sum of the NSEs at np = 18 for the naive and optimal experimental
design were 63.9709 and 43.2897, respectively. We also observed an overall decrease
in the NSEs for each of the parameters chosen by the subset selection algorithm at
all values of np = 1, . . . , 18. For example, the NSE for KmC estimated at np = 18
is less for the optimal experimental design (0.2144) than for the naive experimental
design (0.4363), and similar results were found for the other parameters in the model
at all values of np. Moreover, two parameters were below the 95% confidence interval
threshold at np = 18 vs. only 1 parameter for the naive experimental design (Figure
2). Specifically, only the NSE for KmC completely falls below the threshold set at .5102
for both naive and optimal experimental designs. However, the NSE for k5 also falls
below the threshold for the naive and experimental designs for all values of np. We also
observed that RNAi perturbations could increase the number of parameters estimated
with reasonable statistical confidence, i.e., the maximum number of parameters that
lay below the uncertainty threshold were np = 8 and np = 10 for the naive and optimal
experimental designs, respectively.
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Figure 2: The normalized standard errors (NSEs) associated with a naive (Top) and
optimal (Bottom) experimental design using tf = 72 hrs, observation frequency = 3
hrs, andH = 3. The solid horizontal line is the threshold for the selection of parameters
with reasonable normalized standard errors (NSE = 0.5102).
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2.2 Optimal Experimental Design: tf = 72 hrs, observation fre-
quency = 3 hrs, H = 5

We investigated whether increasing the number of possible time intervals for the RNAi
perturbation could have a greater affect on reducing parameter uncertainty. We imple-
mented our optimization algorithm using an experimental time of 72 hours, an observa-
tion frequency of 3 hours, and 5 time intervals for possible RNAi activation/deactivation
(H = 5). Using 5 possible perturbation intervals, we found that the optimal time mesh
s and corresponding perturbation vector b defining u(t; b, s) were equal to {0, 16.7561,
38.7894, 44.5964, 70.0176, 72} and {0, 1, 1, 0, 0}, respectively. Figure 3 (Top) displays
the naive experimental design results with comparison to the optimized experimental
design results (Bottom) with regard to parameter uncertainty as calculated using the
subset selection algorithm.

We found that, although an optimal experimental design with H = 5 did have an
impact on parameter uncertainty as compared to the naive experimental design, it was
not very different from the case with H = 3 (Figure 3). For example, the sum of
the NSEs for H = 3 and H = 5 for np = 18 were 43.2897 and 43.1881, respectively.
Likewise, the maximum number of parameters that lay below the uncertainty threshold
for an optimized experimental design was the same for H = 3 and H = 5, i.e., np = 10.

Instead of affecting parameter uncertainty, we found that increasing H from 3 to
5 changes the timing of the optimal RNAi perturbation, from to 16.84-47.08 hours
to 16.75-44.59 hours (see Figure 4 for forward solutions). Interestingly, the RNAi
perturbation was not equivalent for the H = 3 and H = 5 case, despite the observation
that both experimental designs resulted in essentially a single continuous perturbation.
This result may reflect the non-uniqueness of the solution to the optimization algorithm,
which, in general, is not guaranteed by optimal experimental design theory. Thus, we
surmise that the optimal solution to the design problem is highly dependent on the
free parameters used to implement the optimization algorithm, e.g., the choice of H.
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Figure 3: The normalized standard errors (NSEs) associated with a naive (Top) and
optimal (Bottom) experimental design using tf = 72 hrs, observation frequency = 3
hrs, andH = 5. The solid horizontal line is the threshold for the selection of parameters
with reasonable normalized standard errors (NSE = 0.5102).
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Figure 4: Forward solutions of the circadian model for the naive and optimized experi-
mental designs for the Per, Cry, and Bmal1 (B) mRNAs and PER, CRY, and BMAL1
(B) proteins from 0-72 hours with the observation frequency equal to 3 hours. In the
left figures, solid lines represent Cry while dashed lines are Per. Forward solutions are
calculated at discrete observation time points (every 3 hours) and plotted as (*), with
connecting lines shown for clarity. Top (4 plots): Forward solutions for the naive ex-
perimental design. Middle (4 plots): Forward solutions for the optimized experimental
design (H = 3). Bottom (4 plots): Forward solutions for the optimized experimental
design (H = 5).
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2.3 Optimal Experimental Design: tf = 72 hrs, observation fre-
quency = 1 hrs, H = 3

We investigated whether increasing the observation frequency from every 3 hours to
every hour could have a greater affect on reducing parameter uncertainty when using
our optimal design algorithm with H = 3. Using 3 possible perturbation intervals with
a one hour observation frequency, we found that the optimal time mesh s and corre-
sponding perturbation vector b defining u(t; b, s) were equal to {0, 15.6869, 44.0767, 72}
and u(t) = {0, 1, 0}, respectively. Figure 5 (Top) displays the naive experimental design
results with comparison to the optimized experimental design results (Bottom) with
regard to parameter uncertainty as calculated using the subset selection algorithm.

Our results indicate that increasing the observation frequency when utilizing our
optimal design algorithm may have a significant affect on lowering parameter uncer-
tainty. In the case of H = 3, the sum of the NSEs for np = 18 parameters was lowered
from 43.28 to 25.41 by increasing the observation frequency from 3 per hour to 1 per
hour, respectively. The maximum number of parameters that lay below the uncer-
tainty threshold for an optimized experimental design with 3 and 1 hour observation
frequencies was np = 10 and np = 12, respectively. There are 10 parameters below the
uncertainty threshold at np = 18 when using an optimized experimental design with
1 hour observation frequency and H = 3 (Figure 5 (Bottom)). In contrast, there are
only 2 parameters that lie below the uncertainty threshold at np = 18 when using an
optimized experimental design with 3 hour observation frequency and H = 3 (Figure
2 (Bottom)).

We note that increasing the observation frequency when using a naive experimental
design could have a similar affect on parameter uncertainty as using an optimal exper-
imental design. For example, we found that increasing the observation frequency to
every hour when using a naive experimental design resulted in parameter uncertainty
levels similar to results found when using an optimal experimental design with a 3
hour observation frequency and H = 3. For example, there are two parameters that
lie below the uncertainty threshold at np = 18 for both of these cases (compare Figure
5 (Top) and Figure 2 (Bottom)).

We also tested whether increasing the number of perturbation time intervals from
H = 3 to H = 5 could have an affect on parameter uncertainty when using a 1 hour
observation frequency. Similar to the case with a 3 hour observation frequency, we
found that increasing H had only a minor influence on overall parameter uncertainty.
Specifically, the sum of NSEs for np = 18 was equal to 25.1412 when H = 3 and slightly
decreased to 25.1411 when H = 5 (parameter subset selection plots not shown).
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Figure 5: The normalized standard errors (NSEs) associated with a naive (Top) and
optimal (Bottom) experimental design using tf = 72 hrs, observation frequency = 1 hr,
and H = 3. The solid horizontal line is the threshold for the selection of parameters
with reasonable normalized standard errors (NSE = 0.5102).
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2.4 Optimal Experimental Design: tf = 320 hrs, observation
frequency = 3 hrs, H = 3

We investigated whether increasing the total experiment time from tf = 72 hours to
tf = 320 hours could have an affect on reducing parameter uncertainty when using our
optimal design algorithm with H = 3. Using 3 possible perturbation intervals with a 3
hour observation frequency, we found that the optimal time mesh s and corresponding
perturbation vector b defining u(t; b, s) were equal to {0.0005, 108.7691, 210.8853,
313.3115} and {0, 1, 0}, respectively. Figure 6 (Top) displays the naive experimental
design results with comparison to the optimized experimental design results (Bottom)
with regard to parameter uncertainty as calculated using the subset selection algorithm.

Our results indicate that increasing the total experiment time when utilizing our op-
timal design algorithm may have a significant affect on lowering parameter uncertainty.
For example, in the case of H = 3, the sum of the NSEs for np = 18 parameters was
lowered from 43.28 to 11.3029 by increasing tf from 72 to 320, respectively (compare
Figure 2 (Bottom) to Figure 6 (Bottom)). The maximum number of parameters that
lay below the uncertainty threshold for an optimized experimental design for tf = 72
and tf = 320 hours were np = 10 and np = 14, respectively. Likewise, the number of
parameters that were below the uncertainty threshold at np = 18 were 2 and 11 for the
case when tf = 72 and tf = 320, respectively.

We plotted the forward solutions of the circadian system with a naive or optimized
experimental design and total experiment time of 320 hours (Figure 7). Examining
these plots, and comparing to Figure 4, we observed that one of the primary differences
between a 72 hour and 320 hour experiment was that a 320 hour experiment allows the
circadian system more time to return to its periodic equilibrium. These results suggest
that a longer experiment time may provide more information content to a data set, not
only by increasing the number of total data points collected, but also by allowing the
experimenter to more fully observe different dynamic regimes when employing system
perturbations.
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Figure 6: The normalized standard errors (NSEs) associated with a naive (Top) and
optimal (Bottom) experimental design using tf = 320 hrs, observation frequency = 3
hrs, andH = 3. The solid horizontal line is the threshold for the selection of parameters
with reasonable normalized standard errors (NSE = 0.5102).
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Figure 7: Forward solutions of the circadian model for the naive and optimized experi-
mental designs for the Per, Cry, and Bmal1 (B) mRNAs and PER, CRY, and BMAL1
(B) proteins from 0-320 hours with the observation frequency equal to 3 hours. In the
left figures, solid lines represent Cry while dashed lines are Per. Forward solutions are
calculated at discrete observation time points (every 3 hours) and plotted as (*), with
connecting lines shown for clarity. Top (4 plots): Forward solutions for the naive ex-
perimental design. Bottom (4 plots): Forward solutions for the optimized experimental
design (H = 3).
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3 Discussion
Overall, our results suggest that experimental input manipulation that produces non-
equilibrium system dynamics for oscillatory systems yields more informative data sets
for parameter estimation than that obtained when using an unaltered or undisturbed
system. In particular we obtain more statistical certainty in parameters for the model in
the form of lower normalized standard errors. Optimization of the input manipulation
with a piecewise constant functional form, i.e., via our iterative algorithm (Equations
(29) and (30)), can successfully reduce standard errors in parameter estimates for the
circadian system, and possibly among other models with dynamic equilibria. As shown
unanimously in the graphs presented in the Results section, creating a perturbation
in the dynamic circadian system at least results in lower normalized standard errors
and often increases the number of parameters below the designated threshold. Increas-
ing the observation frequency while calculating optimal system perturbations further
reduces the normalized standard errors, as seen in Figure 5.

Interestingly, when the duration of the experiment was increased, the normalized
standard errors decreased without the perturbation and even more so with the system
disturbance. This was evidenced by Figure 6. The result matches intuition since the
observation frequency of 3 hours is not related to the periodicity of the system’s os-
cillations; therefore, when the model is simulated for 320 hours, there is not yet any
information repetition or selection of points with the same values at different times.
The opposite of this would be selecting the maximum of each period at different times.
The data would essentially be observed as constant, and the Fisher Information Ma-
trix would not be invertible. Since the sensitivities are calculated at time points not
dependent on the periodicity of the model oscillations, running the model for a longer
period of time “discovers” more about the solution, thereby producing a Fisher Infor-
mation Matrix without any similar columns or rows. As seen in Figure 6, perturbing
the system away from this equilibrium only exacerbates this effect.

Future investigations will attempt to investigate possible parameter correlations
by bootstrapping and calculating standard errors through asymptotic techniques in
the context of information theory. Provided raw data, another future investigation
could consolidate the conclusion of this paper with inverse problem techniques and
extrapolate these findings to the creation of optimal experimental designs.
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