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Abstract Coupled physics electrical conductivity imaging utilizes interactions between
the electric and some other fields, thereby providing useful interior functionals. Com-
bining the interior and boundary data, such couplings are aimed to overcome low res-
olution inherent to the traditional electrical impedance tomography. In this paper we
present a brief overview of some physical and mathematical aspects of coupled physics
electrical conductivity imaging.
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1 Introduction

Determining the electrical conductivity was originated in electrical prospecting in [21,
43,72]. Traditionally, boundary data has been the main information used to image the
electrical conductivity of the interior of an object. Methods which seek to recover the
electrical conductivity inside the object from measurements of voltages/currents at the
boundary have been known as Electrical Impedance Tomography (EIT). Due to the
high contrast in the electrical conductivity of biological tissues, a renewed interest in
EIT started in the middle of the eighties geared by the applications in medical imaging
(see, e.g., [31], which soon exploded in developments on both the mathematics and
engineering field. Among some of the most remarkable results on the mathematical
facet of EIT we mention [5, 20, 54, 55, 63]. For understanding on the breadth of these
development we refer to the review papers [17,18,23]. It is by now well understood that
the EIT problem is severely ill-posed and it possesses a logarithmic-type stability [?],
which cannot be in general improved (see [50]). The stability of such a type is a
manifestation of the low sensitivity of the trace of the voltage potential at the boundary
to variations of the electrical conductivity inside the object. As a result, the resolution
of EIT is very low.

To increase sensitivity, new methods have been developed that are based on interior
measurements. In some cases, such data can be obtained by coupling the primary
physical field, which is the electric field, with other fields, such that the interactions
between them provide useful interior functionals. Note that in some cases the latter
may lead to several different inverse problems In this review we focus on the problem
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of recovering the electrical conductivity from the interior data subject to a certain
boundary condition(s).

To date, in the mathematics literature (see, e.g., surveys [10, 59, 73]) there are
available a number of papers in which the interior functionals of u or ∇u have been
considered. The specific choice of such functionals is determined by the physical nature
of the problem, as well as by their sensitivity to variations of the electrical conductivity.
To cite several examples, one may indicate a component Hz of the magnetic field H in
Magnetic Resonance EIT, the current density J or its magnitude |J| in Current Density
Imaging, the power density σ|∇u|2 in Impedance-Acoustic or Accousto-Electrical, or
Thermo-Acoustic Tomography. In the first two imaging modalities the electric field is
coupled with magnetic fields of the MRI systems, whereas it is coupled with ultrasound
in the last three modalities. More details can be found in [66,73].

As for any inverse problem, the main issue of coupled physics electrical conductivity
imaging is establishing both the uniqueness and stability results. To achieve that, a
mathematical model that describes and quantifies the interactions between the physi-
cal probing fields needs to be developed. Since one of physical fields is necessarily the
electric field, the Maxwell’s equations play an important role in such a model. In par-
ticular, if the electric field is generated by the surface dc-currents or ac-currents at low
frequency, then Maxwell’s equations can be reduced to the conductivity equation in-
side a conductive object with an appropriate boundary condition(s). Due to Ohm’s law
J = −σ∇u, the conductivity σ can be expressed as the ratio of magnitudes of the cur-
rent density J and ∇u. Substituting this expression in the conductivity equation, one
may obtain the nonlinear differential equation subject to the corresponding boundary
conditions(s), which serves as a mathematical model of current density imaging.

∇ · ( |J|
|∇u|

∇u) = 0. (1)

Moreover, one may generalize such a model by considering the so-called weighted p-
Laplace equation

∇ · ( F (x)

|∇u|2−p
∇u) = 0, 0 ≤ p <∞, (2)

which is, in turn, the generalization of the p-Laplace equation (see, e.g., [47]). Here,
F (x) = σ(x)|∇u|p is the functional mentioned above. Note that in current density
imaging, p = 1, F (x) = |J(x)|, and the Dirichlet problem for the equation (2) becomes
singular and degenerate elliptic. In power density imaging, p = 0, F (x) = σ|∇u|2, and
the Cauchy problem for the equation (2) becomes hyperbolic (see, e.g., [9], [39]). This
shows that analysis of (2) is a challenging problem.

Note that for 1 ≤ p < ∞ the equation (2) is the Euler-Lagrange equation for the
functional

M [u] =

∫
Ω

F (x)|∇u(x)|pdx, u ∈ H1(Ω). (3)

However, for 1 < p < ∞ this functional is strictly convex, whereas for p = 1 is
only convex, and the convexity is completely lost for p < 1. Moreover, for p = 0
the form is not valid. Nevertheless, this fact allows for the variational formulation of
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coupled physics electrical conductivity imaging, which is well suited for constructing
the computational algorithms.

The paper is organized as follows. In the following section, we outline two cou-
pled imaging modalities: EIT and Magnetic Resonance Imaging (MRI) and EIT and
Ulrasound Imaging. In Section 3, we survey some mathematical aspects of coupled
physics electrical conductivity imaging. Section 4 describes some computational al-
gorithms developed by now to provide recovering the electrical conductivity from the
interior data. The effectiveness of these algorithms is demonstrated in computational
experiments with simulated data.

2 Some Coupled Imaging Modalities

2.1 MRI+EIT

It is well known that three different types of magnetic fields are utilized in a traditional
MRI system. These are the strong static (dc) magnetic field H0, the so-called gradient
field Hg and the RF field HRF at the Larmor frequency. So that, in a typical pulse
sequence produced by the MRI system the following superposition of magnetic fields
is applied at every point x of a bounded domain Ω

H(x) = H0(x) + Hg(x) + HRF (x).

After applying such a sequence, the Free Induction Decay (FID) signal proportional
the nuclear magnetisation is then measured and used to produce a magnetic resonance
image.

In the traditional EIT imaging modality (see, e.g., [18,23]), the dc or low frequency
(≤ 1 kHz) current is injected into the domain Ω from its boundary through surface
electrodes. If the domain Ω is filled with a conductive medium, then an additional
magnetic field is generated in Ω due to the Bio-Savart law

HBS(x) =
1

4π

∫
Ω

J(y)× y − x
|x− y]3

dy + a harmonic function, x ∈ Ω,

where J(x) is the current density in Ω generated by the injected current.
Coupling these modalities results in the total magnetic field

H(x) = H0(x) + Hg(x) + HRF (x) + HBS(x)

generated in Ω, so that the FID signal becomes sensitive to variations of the Bio-Savart
field. Thus, the idea is to recover the Bio-Savart field HBS in Ω from the perturbed
FID signals. Such an idea was experimentally realized in [60] as follows.

Let the static magnetic field H0 be oriented along the z-axis. After injecting a dc
or low frequency currents, the Bio-Savart field HBS produces a phase change in the
rotating transverse components (i.e., for z = z0) of the Fourier transforms of the FID
signals. Then the imaginary parts M+ and M− of such complex valued transforms are
given by

M s(x, y, z0) = M(x, y, z0)e(s)iµ0µHz(x,y,z0)T+iφ0 ,
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where φ0 is the phase due to the ”initial” magnetic field, i.e., without the Bio-Savart
field, T is the duration of the surface currents, γ is the gyromagnetic ratio, µ0, µ are
the absolute and relative magnetic permeabilities, and s = + or −. Then the measured
phase change due to the Bio-Savart field is given by

Ψ(x, y, z0) = = log
M+(x, y, z0)

M−(x, y, z0)
,

where = log means the analytic branch of the complex logarithm. Since Ψ = 2γµ0µTHz,
we obtain

Hz =
1

2γµ0µT
Ψ.

Rotating an object around the vector field H0 and repeating this process, one may
obtain two other components Hx, Hy.

2.1.1 MREIT

In practice, one can measure only one component of the Bio-Savart field if an object
is positioned along the vector field H0. To measure the other components, the object
needs to be rotated around it. The detailed description of the physical principles of
MREIT can be found in the review papers [66,67]. Since such a rotation is problematic
in a commercial MRI system, it may seem that the following inverse model formalizes
Magnetic Resonance Electrical Impedance Tomography (MREIT).

Given (Hz, g), where Hz is the z-component of the Bio-Savart field in Ω resulted
from injecting the dc or low frequency current through ∂Ω, and the functions σ(x) and
g(x) are related to the voltage potential u(x) by

∇ · (σ∇u) = 0 in Ω ⊂ R3, (4)

∂nu = g on ∂Ω, (5)

find the electrical conductivity σ in Ω. However, knowledge of only one pair (Hz, g) is
not enough to guarantee the unique reconstruction. It was shown in [64,65] that in two
dimensions the uniqueness result can be established if two z-components Hz1 and Hz2 of
two linearly independent Bio-Savart fields resulted from applying two surface currents
are measured. However, it still remains unclear whether this result may be extended to
three dimensions. It should also be mentioned that although there is available in the
mathematics literature (see, e.g., [66]) a number of MREIT techniques used in both
the numerical and biomedical experiments, the convergence result was established only
for few specific cases (see [48]). It was recently shown (see [62]) that in MREIT at the
Larmor frequency one can determine the field Hx+ iHy inside (where both components
Hx, and Hy are complex valued). Moreover, under further axial assumptions, one can
determine the isotropic conductivity.

2.1.2 CDI

In the mathematics literature the term Current Density Imaging (CDI) (or Current
Density Impedance Imaging (CDII)) is associated with the group of imaging techniques
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exploiting a coupled imaging modality in which an MRI system is normally, but not
necessarily, uzed to recover the electrical conductivity σ in Ω from the current density J
or its functionals. If an object is rotated around the vector field H0, then all components
of the Bio-Savart field can be measured, so that the vector field HBS is determined.
Due to Ampere’s law, the current density J generated by the surface current electrodes
inside Ω can then be determined as

J = ∇×HBS.

This relation was exploited in the first CDI modality (see [60,61]).

It is well known that in a linear conductive medium the Ohm’s law takes place

J = −σ∇u. (6)

This relation is the physical basis of all existing CDI techniques. It should also be
mentioned that since both quantities σ(x) and u(x) are unknown in Ω, an inverse
conductivity problem is inherently nonlinear. Although there are several formulations
of the inverse conductivity problem, as well as approaches to its solution, the common
feature is, however, that the electric conductivity relates to the voltage potential by (4)
in case of the static or low frequency electromagnetic field and isotropic conductivity.

In [41] the following problem was considered. Given a single measurement (J, f),
where f is the trace of the voltage potential on the boundary ∂Ω, find σ in Ω. In 2D,
the unique recovery σ from (J, f) was based on the fact that the vector field J is normal
to equipotential lines. In [KKS1] the relation (6) was used to reduce the conductivity
equation (4) to the degenerate elliptic equation

∇(̇
|J|
|∇u|

∇u) = 0 in Ω (7)

and it was shown that knowledge of the applied current at the boundary ∂Ω together
with the magnitude of current density field |J| inside Ω is insufficient for the unique
reconstruction of σ. To overcome this difficulty, the so-called J- substitution algorithm
was proposed. It was shown in [36] that applying two surface currents and using magni-
tudes of two linearly-independent current density fields (|J1|, |J2|) provides the unique
and stable recovery of σ. In [JNH] an explicit reconstruction formula for ∇ lnσ(x) was
derived for the case when two transversal current density fields are available. Later,
the same expression was independently discovered in [46].

Observing the imaging techniques indicated above, one may notice that the current
density vector field(s) together with the boundary currents or voltage potentials are
required to reconstruct the electrical conductivity. However, the presence of only one
magnitude of the current density in (7) motivates the formulations of the CDI problem
with a single measurement of boundary and interior data. In [56] such formulations
were proposed and analized for the first time. In [56] it was shown that knowledge of
only one J in Ω together with the Cauchy data on a part of ∂Ω provides the global
uniqueness and conditional stability results.
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2.2 Coupling the EIT and Ultrasound Imaging Modalities

The main idea is that such a combination may possess the high contrast resolution,
which is typical for the EIT imaging modality, as well as the high spatial resolution,
which is provided by the ultrasound imaging modality. However, the practical real-
ization of this idea can be based on different physical phenomena that we consider
below.

Resulted from applying the standard EIT setting to a conductive medium, the
distributions of both quantities E and J yield the distribution of the electrical energy
in Ω. The latter is given by Joule’s law as W = J · E. The energy is spent on raising
temperature in the medium thereby creating a pressure wave, which is recorded on
∂Ω. This phenomenon was utilized in [28] when constructing the forward and inverse
mathematical models. Specifically, the process of propagation and scattering of the
pressure wave was modelled by the Cauchy problem for the wave equation

∂ttp− c−2(x)∇2p = 0 in R3 × (0,∞), (8)

p(x, 0) = p0, ∂np(x, 0) = 0 in R3. (9)

Measuring the boundary pressure, i.e., p(x, t), x ∈ ∂Ω, one may then determine the
initial condition p0(x). Although by itself, this problem is of great interest, it is out of
scope of our survey.

Assuming that the boundary pressure is proportional to the Joule’s energy, i.e.,
p0(x) = γ(J · E), one may obtain the interior data

W (x) =
p0(x)

γ

and formulate the inverse problem is follows. Given (f, g,W ), where f = u(x), g =
∂nu(x), x ∈ ∂Ω, and the voltage potential u(x) satisfies the equation (4), find σ(x) in
Ω. Using multiple data, the uniqueness result was established in [22] (in 2D) and [8]
(in 3D). The stability was studied in [40].

In the other implementation (see [4], a conductive medium is perturbed by focusing
ultrasonic waves on a sufficiently small volume of the object to be investigated. Such
mechanical perturbations lead to elastic deformations of the medium that, in turn,
cause variations of conductivity. Then the focus of ultrasound waves scans the entire
domain, and the variations of the voltage potential are sensed by the standard EIT
settings on the boundary ∂Ω. Analogously, the measured changes of the boundary
voltage potential can be used to determine the power density W (x) in Ω.

3 Some Mathematical Aspects

It was shown in the previous section that in both CDI and Ultrasound EIT the inte-
rior data is represented by functionals of ∇(u). But in CDI it has the form F (x) =
σ(x)|∇u(x)|, whereas in Ultrasound EIT it takes the form F (x) = σ(x)|∇u(x)|2. Then
substituting these functionals in the conductivity equation

∇ · (σ(x)∇u(x)) = 0, (10)
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one obtain two nonlinear PDEs

∇ · (F (x)

|∇u|
∇u) = 0 (11)

or

∇ · ( F (x)

|∇u|2
∇u) = 0. (12)

This fact gives rise to the analogy with the p-Laplace equations. It follows from the
classical theory (see, e.g., [27,47]) that the Laplace equation is the Euler-Lagrange for
the Dirichlet integral ∫

Ω

|∇u|2dx.

Let p ≥ 0 be a real number. Consider the integral∫
Ω

|∇u|pdx.

Then the nonlinear PDE
∇ · (|∇u|p−2∇u) = 0

is the corresponding Euler-Lagrange equation. Such an equation is called the p-Laplace
equation. A natural generalization of both (11) and (12) can be written as the weighted
p-Laplace equation

∇ · ( F (x)

|∇u|2−p
∇u) = 0. (13)

If 1 ≤ p <∞, then (13) is the Euler-Laplace equation for the functional

M [u] =

∫
Ω

F (x)|∇u|pdx. (14)

If 1 < p < ∞, then the weighted p-Laplace equation is elliptic, and the functional
M [u] is strictly convex, so that it has a unique minimizer. If p = 1, the equation is
degenerate elliptic, and the functional is convex, but not strictly convex. Finally, if
p < 1, the weighted p-Laplace equation becomes hyperbolic, and the functional M [u]
loses convexity. For p = 0 the functional (14) must be replaced with

M [u] =

∫
Ω

F (x) ln |∇u|dx.

Thus, the coupled physics inverse conductivity problem can be formulated as follows.
Find the pair (u(x), σ(x)), x ∈ Ω, where the quantities u(x) and σ are related by
(13), given the interior F (x) and appropriate boundary condition(s). Depending on
how many ”measurements” of the interior and boundary data is used, we will distinct
between the inverse problems with the single or multiple measurements. A single
measurement means that the data associates with only minimal information, i.e., with
only one F (x) and one set of boundary data.

We state one general result demonstrating the close connection of a coupled physics
electrical conductivity imaging with the classical differential geometry. Let Ω ⊂ Rn be
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an open set with the conformal metric g = |J |2/(n−1)I, where |∇u| > 0. Recall that
any solution u ∈ H1(Ω) to the conductivity equation (10) is said to be a σ-harmonic
function. Then the following theorem takes place.
Theorem 1[NNT1] Let u ∈ C1(Ω) be a σ-harmonic function. Then the level sets u = c
are surfaces of zero mean curvature

H = |J |n/(1−n)∇ · (|J | ∇u
|∇u|

)

in the conformal metric g. Moreover, they are critical surfaces for the functional∫
Σ

|J|dS,

where Σ = {x ∈ Ω : u = c}, and dS is the Euclidean surface measure.
In two dimensions, the equipotential lines are also geodesics in the conformal metric,

and they can be viewed as characteristics of (11). One may, therefore, find the geodesics
originating on the part of the boundary where measurements are available, and the
voltage potential u(x) is then determined in the region spanned by these characteristics.

3.1 The Interior and Cauchy Data

If the conductivity σ(x) is supposed to be known on the boundary ∂Ω (or on a part of
it), then it is meaningful to pose both the Dirichlet and Neumann conditions.

3.1.1 A Single Measurement

The Weighted 1-Laplace Equation. Consider the following inverse problem.
Given the Cauchy data (u, ∂nu) on a part Γ of the boundary and the magnitude of

the current density |J| in Ω, find the conductivity σ in Ω.
Let Ω be a simply connected planar domain with the sufficiently smooth boundary

∂Ω, and σ ∈ L∞(Ω) be a positive function. A map on the connected boundary of such
a domain is said to be two-to-one if the set of local maxima is either one point or one
connected arc. Let f be a continuous function on a simple closed curve. It is said
to be almost two-to-one if it is a two-to-one map, except possibly at its extrema. It
was shown in [AL3] that if the trace u|∂Ω of a σ-harmonic function u in Ω is almost
two-to-one, then |∇u| > 0 in Ω, and each level set of u is a sufficiently smooth curve
inside Ω whose endpoints lie on ∂Ω.
Theorem 2[NTT1] (Uniqueness) Let f ∈ C2(∂Ω) be an almost two-to-one function
and Γ be a maximal arc on which f is strictly monotone. Then for |J| ∈ C1(Ω)∩C2(Ω)
and g ∈ C1(Γ), there exists a unique pair (σ, u) ∈ C2(Ω) × C2(Ω), such that u is σ-
harmonic in Ω and u = f, ∂nu = g on Γ.

It follows from this theorem that if a part of Ω is not spanned by the characteristics
originated on Γ, then uniqueness cannot be established. An example of non-uniqueness
can be found in [NTT1] (see Proposition 3.1).

Let u, u1 be two admissible σ, σ1-harmonic maps, such that u|Γ = f, u1|Γ = f1,
∂u|Γ = g, ∂u1|Γ = g2, |J| = σ|∇u|, |J1| = σ1|∇u1|. Denote ‖u‖C1(Ω) = ‖u‖∞+‖∇u‖∞.
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Under such assumptions, the following result takes place.
Theorem 3[NTT1] (Stability) Let f, f1 ∈ C2(∂Ω) be almost two-to-one maps that
have a common maximal arc Γ and such that infΓ f ≥ ε, infΓ f1 ≥ ε, max{‖g/f ′ −
g1/f

′
1‖C1(Γ), ‖f−1 − f−1

1 ‖C1(Γ), ‖∇(ln |J| − ln |J1|)‖C1(Γ)}
≤ δ for some δ > 0. Then

‖σ − σ1‖∞ ≤ ϕ(δ),

where ϕ : [0,∞) → [0,∞) is a map depending on ε, ‖σ1‖∞, ‖g1/f
′
1‖∞, and ‖f−1

1 ‖∞,
such that ϕ(δ)→ 0 as δ → 0.

Note that since the estimate ϕ(δ) depends on ‖σ1‖∞, the stability is conditional.
The Weighted 0-Laplace Equation. Consider the following inverse problem.
Given the Cauchy data (u, ∂nu) on ∂Γ and the power density W (x) = σ(x)|∇u|2 in

Ω, find the conductivity σ in Ω.
Clearly, in this case the inverse model is represented by the Cauchy problem for the

nonlinear PDE (12). Unlike the previous case, this problem is hyperbolic. This can
easily be seen after transforming the Cauchy problem to the form (see also [BalC])

ηij(∇u)∂2
iju+ ki∂iu = 0, in Ω,

u = f, ∂nu = g on ∂Ω,

where ki = −∇lnW , (ηij) is a definite matrix of signature (1, n − 1). In [9] the local
uniqueness and stability results (see Theorem 3.1) were established on a domain of
influence of the space-like part of the boundary swept out by the space-like surfaces.
It should be mentioned that the local uniqueness and stability results can also be
established from the general theory of ill-posed problems for PDEs [45]. Note that if Ω
is the geometry with a hole, i.e., an annulus, in 2D, it and σ(x) are sufficiently smooth,
and |∇u| is bounded, then Theorem 3.1 provides the global results (see [9], Section
4.1).

3.1.2 Multiple Measurements

Utilizing the concept of complex Geometric Optics Solutions (CGOs) and three interior
measurements, the global uniqueness and stability results were established for n ≥ 2
(see [9], Section 4.2). Specifically, under an assumption that σ(x) can be extended by
σ0 = 1 on Rn\Ω and it is smooth on Rn, it was shown in [9] (see Theorem 4.5 for detail)
that there exists an open set of functions {f1, f2} on ∂Ω, such that if u1 and u2 are the
corresponding solutions to the conductivity equation (10), then the measurements

W1 = σ(x)|∇u1|2, W2 = σ(x)|∇u2|2, W3 = σ(x)|∇(u1 + u2)|2

together with the corresponding Cauchy conditions (f1, g1), (f2, g2), (f1 + f2, g1 + g2)
uniquely determine σ(x) in a domain defined by CGOs. Moreover, if Wij, Ŵij and

(f1, g1), (f2, g2) and (f̂1, ĝ1), (f̂2, ĝ2) are the interior and Cauchy data corresponding to
σ and σ̂ and if the norms of σ(x)− 1 and σ̂(x)− 1 are bounded by M in Hn/2+3+ε for
some ε > 0, then there exists the constant C = C(M), then the global stability result
takes place

‖σ − σ̂‖ ≤ C(‖γ − γ̂‖+
∑

(i,j)∈S

‖∇Wij −∇Ŵij‖),
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where S = {(1, 1), (1, 2), (2, 2)}, γ = (f1, g1, f2, g2), γ̂ = (f̂1, ĝ1, f̂2, ĝ2), and ‖ · ‖ is the
L2-norm on the corresponding sets.

Note that if a finite set of measurements

Wij = σ(x)∇ui · ∇uj, (i, j = 1, 2, ...,M)

is available in Ω for M = n, n is even or for M = n + 1, n is odd, then the global
result can be formally obtained without knowledge of the corresponding Cauchy data
(see [10], Section 4.2).

3.2 The Interior and Dirichlet Data

Consider the weighted 1-Laplace equation (11). It was shown in [35] that knowledge
of the pair (|J|, g), where g = σ∂nu(x), x ∈ ∂Ω, is insufficient in order to establish
existence and uniqueness. The alternative is either to acquire two magnitudes of the
current density in Ω corresponding to two different surface currents or to use a single
measurement of |J| together with the Dirichlet condition on ∂Ω. However, in the latter
case existence of the so-called viscosity solutions (see the notion in [24]) may prevent
uniqueness as well. In [SZ] it was shown that for |J| ≡ 1 in Ω = {(x1, x2) ∈ R2 :
x2

1 + x2
2 < 1} and f = x2

1 − x2
2 on ∂Ω there exist a parametric family of viscosity

solutions

ut(x1, x2) =


{2x2

1 − 1, if |x1| ≥
√

1+t
2
, |x2| ≤

√
1−t

2

t, if |x1| ≤
√

1+t
2
, |x2| ≤

√
1−t

2

1− 2x2
2, if |x1| ≤

√
1+t

2
, |x2| ≥

√
1−t

2

where t ∈ [−1, 1]. We observe that the only solution u0(x), x = (x1, x2) is a minimizer
of the functional

M [v] =

∫
Ω

|J(x)||∇u(x)|dx (15)

with the constraint v = f on Ω over the space of functions with bounded variations.
This fact motivates minimizing the functional M [z] instead solving the Dirichlet prob-
lem for the weighted 1-Laplace equation. At the same time, this example shows that
if one minimize M [z] for an arbitrary data (|J|, f), then it is possible to obtain so-
lutions u(x), such that ∇u = 0 on open sets while |J| ≡ 1 in Ω. Clearly, such so-
lutions are extraneous since they do not represent voltage potentials. Therefore, the
concept of the admissible data needs to exploited in order to exclude extraneous solu-
tions. In particular (see [NTT2]), a pair (|J|, f) is called admissible if for every pair
(|J|, f) ∈ L2(Ω)×H1/2(∂Ω) there exists a function σ(x) ∈ L∞+ . such that σ|∇u| = |J|,
where u ∈ H1(Ω) is a weak solution to the Dirichlet problem for the weighted 1-Laplace
equation. Clearly, the pair (1, x2

1 − x2
2) is the example indicated above is not admis-

sible since σ|∇u| 6= |J| in the square [−1/
√

2, 1/
√

2] × [−1/
√

2, 1/
√

2]. The following
uniqueness result takes place
Theorem 4[NTT2] Let Ω ⊂ Rn, n ≥ 2 be a domain with the C1,α-boundary, (|J|, f) ∈
Cα(Ω)×C1,α(∂Ω) be an admissible pair, and σ ∈ Cα(Ω). If |J| > 0 almost everywhere
in Ω, then the variational problem

argmin{M [v] : v ∈ W 1,1
+ (Ω) u C(Ω), u|∂Ω = f}, (16)
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where W 1,1
+ (Ω) = {u ∈ L1(Ω) : ∇u ∈ L1(Ω)}, has a unique solution u and σ = |J|/|∇u|.

If n = 2, then for a simply connected planar domain the sufficient condition formu-
lated in Theorem 4 can be simplified as follows

Theorem 5[NTT2] Let Ω ⊂ R2 be a simply connected domain with the C1,α-boundary,
(|J|, f) ∈ Cα(Ω)×C1,α(∂Ω) be an admissible pair with the almost two-to-one function
f , then there exists a unique σ > 0 in Cα(Ω), such that |J| = σ|∇u|, where u is the
solution of the variational problem (16).

In [53] the uniqueness result (see Theorem 4) was extended to the weighted least
gradient problem in the space of functions with bounded variations, BV (Ω), i.e., to
the problem

argmin{
∫

Ω

a(x)|Dv| : v ∈ BV (Ω), v|∂Ω = f}, (17)

where the function a(x) ∈ Cα(Ω) is allowed to be vanished on some sets. In [JMN] the
variational problem (17) was extended to the general least gradient problem

arginf{
∫

Ω

ϕ(x,Dv) : v ∈ BVf (Ω)}, (18)

where BVf (Ω) = {v ∈ BV (Ω) : ∀x ∈ ∂Ω, limy∈Ω,|x−y|<r |f(x)− v(y)| = 0}, f ∈ C(∂Ω),
and ϕ(x, ξ) is a function that is convex and homogeneous of degree 1 with respect to
the ξ-variable, so that the functional in (18) is the total variation of u in Ω. Note that
for ϕ(x, ξ) = a(x)|ξ| the variational problem (18 is reduced to the problem (17), and if
a(x) = |J(x)|, then we obtain (16).

Suppose the function ϕ(x, ξ) satisfies the following conditions.
(1) ∃α > 0 : α|ξ| ≤ ϕ(x, ξ) ≤ α−1|ξ|,∀x ∈ Ω ∧ ξ ∈ Rn;
(2) the map ξ → ϕ(x, ξ) is a norm ∀x;
(3) ϕ ∈ W 2,∞

loc away from ξ = 0 and ∃C > 0 : ϕξiξj(x, ξ)p
ipj ≥ C|p′ |2, ∀ξ ∈ Sn−1 ∧ p ∈

Rn, where p
′
= p− (p · ξ)ξ;

(4) ϕ and Dξϕ are W 2,∞ away from ξ = 0 and ∃ρ = const > 0, λ = const > 0:
ϕ(x, ξ) + |Dξϕ(x, ξ)| + |D2

ξϕ(x, ξ)| + |D3
ξϕ(x, ξ)| + ρ|DxDξϕ(x, ξ)| + ρ|DxD

2
ξϕ(x, ξ)| +

ρ2|D2
xDξϕ(x, ξ)| ≤ λ, ∀x ∈ Ω, ξ ∈ Sn−1.

Then the following results take place.

Theorem 6[JMN](Existence) Let ϕ : Rn × Rn → R be a continuous function that
satisfies conditions (1)-(2), and Ω ⊂ Rn be a bounded Lipschitz domain. If Ω satisfies
the barrier condition with respect to ϕ, i.e., ∂Ω satisfies a positivity condition on a sort
of generalized mean curvature related to ϕ, then ∀f ∈ C(∂Ω)there exists a solution of
the problem (18) in BVf (Ω).

Theorem 7[JMN](Uniqueness and stability) Let Ω ⊂ Rn be a bounded Lipschitz do-
main with the connected boundary, and ϕ : Ω × Rn → R satisfies conditions (1)-(4).
Suppose u1, u2 are solutions of (18) in BVf1(Ω), BVf2(Ω) for f1, f2 ∈ C(Ω). Then

|u1 − u2| ≤ sup
∂Ω
|f1 − f2| a.e. in Ω.

Moreover,

u2 ≥ u1 a.e. in Ω if f2 ≥ f1 on ∂Ω.
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In particular, ∀f ∈ C(∂Ω) there exists at most one solution of the problem (18) in
BVf (Ω).

The results indicated above were obtained under an assumption that the conductiv-
ity σ(x) is isotropic in Ω. Recently, they were extended to an anisotropic conductivity
matrix in a known conformal class from one interior measurement (see [30]). Specifi-
cally, the matrix valued conductivity was represented in the form

σ(x) = c(x)σ0(x), (19)

where c(x) ∈ Cα is a positive scalar valued function and σ0(x) ∈ Cα ∩ Cα

(Ω,Mat(n,Rn)) is a given positive definite symmetric matrix valued function, which
can be determined from Diffusion Tensor Magnetic Resonance Imaging (see [49]). Un-
der these conditions, the following analogue of Theorem 7 takes place.
Theorem 8[HMN] Let Ω ⊂ Rn be a bounded Lipschitz domain with the connected
boundary, and assume that

ϕ(x, ξ) = a(x)

√√√√ n∑
i,j=1

σij0 (x)ξiξj,

where a(x) ∈ C1,1(Ω) is positive and bounded away from zero and σ0(x) ∈ C1,1(,Mat(n,Rn))
satisfies

m|ξ|2 ≤
n∑

i,j=1

σij0 (x)ξiξj ≤M |ξ|2, ∀ξ ∈ Rn

for some 0 < m,M < ∞. If u1, u2 ∈ BV (Ω) are solutions of the variational problem
(18) in BVf1(Ω), BVf2(Ω) respectively, with f1, f2 ∈ C(∂Ω) , then

|u2 − u1| = sup
∂Ω
|f2 − f1| a.e. in Ω.

Morever, u2 ≥ u1 a.e. in Ω if f2 ≥ f1 on ∂Ω. In particular, for the class of ϕ as
described above, (18) has at most one minimizer in BVf (Ω), and any minimizer is
continuous if n = 3.

In [14–16] it was recently shown that if a minimum number of (n + 2) of internal
current densities J is available, the uniqueness result can also be established for a more
general anisotropic conductivity, i.e., without the assumption (19).

In studying the coupled physics inverse conductivity problem, the stability issue
is of particular interest to researchers. Indeed, utilizing the interior data, one may
expect a much better behaviour of the modulo of continuity of a map generated by this
problem. However, due to the nonlinearity, obtaining some estimates of this function
is a challenging problem. Up to now, just few stability results are available in the
mathematics literature. In [40], a formal linearization was derived by considering
small perturbations of the isotropic conductivity σ(x). The stability of the linearized
problem with one (for 0 < p < 1) or two (for 1 ≤ p ≤ 2) interior data was then
proved. In [MS] for one interior data F (x) = σ|∇u|pthe stability was first proved for
the linearization, and it was then used to establsih the stability result for the nonlinear
problem. Specifically, such a result was formulated as follows.
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Theorem 9[MS] Let 0 < p ≤ 1 and u0 be σ0-harmonic, such that ∇u0 6= 0 in Ω. Then
∀θ ∈ (0, 1)∃s > 0, such that if ‖σ‖Hs(Ω) < L,L > 0,∃ε > 0, such that ‖σ−σ0‖C2(Ω) < ε
then ‖σ − σ0‖L2(Ω) < C‖F [σ]− F [σ0]‖θL2(Ω).

4 Computational Algorithms

To construct computational algorithms for coupled physics conductivity imaging, one
may try either to solve numerically the nonlinear equation (13) with the Cauchy or
Dirichlet condition or to construct some minimizing sequences for the functional (14).
Then, one may exploit the Ohm’s law J = σE in order to find the conductivity σ.
Below, we outline some realizations of this approach.

4.1 Reconstruction of level sets of the voltage potential

Apparently, the first computational algorithm for solving the coupled physics inverse
conductivity problem was proposed in [41]. It exploits the fact that in two dimensions
the vector J is normal to equipotential lines at every point in Ω. Specifically, since
the unit vector J/|J| = ∇u/|∇u| = e is orthogonal to an equipotential line L(t) :
(x(t), y(t)) at every point, where t is a parameter, then all the equipotential lines can
be reconstructed by solving the ODE L

′
(t) = e⊥ in Ω, u = f on ∂Ω. Here, (·)⊥ is

the operator of the right-angle counterclockwise rotation. It is assumed that |J| 6= 0
everywhere in Ω. Clearly, this algorithm inherits all advantages and disadvantages that
are typical for the numerical methods for the first order ODEs.

In contrast, the algorithm proposed in [56] utilizes the magnitude of the current
density |J| together with the Cauchy data on a part Γof ∂Ω. The equipotential lines
are recovered from the Cauchy boundary value problems for the system of the second
order ODEs

xtt = −x2
t

|J|x
|J|

(x, y)− 2xtyt
|J|y
|J|

(x.y) + y2
t

|J|x
|J|

(x, y), (20)

ytt = −x2
t

|J|y
|J|

(x, y)− 2xtyt
|J|x
|J|

(x.y)− y2
t

|J|y
|J|

(x, y), (21)

where (f, |J|) ∈ C2,α(∂Ω) × C1,α(Ω). Note that the equipotential lines are originated
on the arc Γ of the boundary ∂Ω, so that the conductivity σ is reconstructed in a
region spanned by these equipotential lines. The conditional stability of this algorithm
follows from Theorem 3. The inversion and stability results are based on classical
arguments on the existence and stability of solutions of ordinary differential equations.
To demonstrate the computational feasibility of this algorithm, the interior data |J|
in Ω and Cauchy data on a part of ∂Ω was numerically simulated. We used the
same conductivity but the interior data |J|, as well as the Cauchy data, is generated
by solving two distinct Dirichlet problems. In one problem the boundary voltage
was almost two-to-one, while in the other problem it was not. The equipotential
lines (characteristics) are calculated by solving the system (20)-(21) together with the
Cauchy data on the left side of the rectangle.

Figure 1 shows the equipotential lines (characteristics) from the corresponding two
experiments. Note that when |J| is generated by boundary data which does not satisfy
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Figure 1: Characteristics computed for the almost two-to-one boundary voltage (left)O
and for non two-to-one boundary voltage (right).

Figure 2: The conductivity images reconstructed from the noiseless (left) and noisy
(right) data simulated from the non two-to-one boundary voltage.

the almost two-to-one condition, the equipotential lines originating on the left side
of the rectangle do not fill the lower right corner of the rectangle. Figure 2 shows
conductivities reconstructed in the experiment with the non two-to-one boundary data.
The lower right corner of images shown in this figure demonstrates computational
artifacts. They are due to the fact that this region is not covered by characteristics.

Instead the Cauchy data, the Dirichlet data can also be used when solving the
system (20)-(21). In this case, the inversion is based on solving two point boundary
value problems, and it allows for obtaining geodesics joining pairs of equipotential
points at the boundary. While for general manifolds with boundary the system (20)-
(21) may not be uniquely solvable, the following uniqueness result takes place.

Theorem 10 [NTT3] Let Ω ⊂ R2 be a simply connected domain with C2,α-boundary,
0 < α < 1. Let (f, |J|) ∈ C2,α(∂Ω) × C1,α(Ω) be an admissible pair with f almost
two-to-one and let (x0, y0), (x1, y1) ∈ ∂Ω be such that f(x0, y0) = f(x1, y1). Then the
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Figure 3: The conductivity images recovered from partial interior and boundary data.

system (20)-(21) with the boundary conditions

(x(0), y(0)) = (x0, y0) and (x(1), y(1)) = (x1, y1) (22)

has a unique solution γ(t) = (x(t), y(t) : [0, 1] → Ω. Moreover, the map u : Ω → R is
constant along γ, i.e., (u ◦ γ)(t) = λ, t ∈ [0, 1] .

Since the solutions of (20), (21) and (22) depend only on |J| near an equipotential
line, one may perform reconstruction of σ from incomplete interior data. Let |J| be
given in a subregion Ω̃, such that

Ωα,β = {x ∈ Ω : α < u(x) < β},

where α and β ar unknown. To find an equipotential line lying entirely in Ω̃, we solve
the problem (20), (21) and (22) for each pair of the boundary points. If the solution lies
in the interior of Ω̃, then it is the correct level curve joining those two boundary points.
If the calculated line passes outside Ω̃ (or touches its boundary) then it is dependent on
the extension of |J| and we discard it. An interval (α, β) of voltages defines a set Ωα,β

provided that, for each (α, β), the calculated λ-equipotential line lies entirely in the
interior of Ω̃. If Ω̃ contains no entire equipotential lines, then all the numerical solutions
will be discarded. An example of the conductivity reconstruction from the incomplete
data is shown in Figure 3. This algorithm provides the local convergence (i.e., an
initial approximation is supposed to be close to the sought solution) that cannot be
strengthened based on the length minimizing property alone in a general metric space:
In the case of a hemisphere, infinitely many geodesics connecting diametral points. In
contrast, in the recent paper [TTV], a globally convergent algorithm (in the sense that
s solution does not depend on an initial approximation) was proposed. The idea is that
the level sets are characteristics of a first-order PDEs. It was shown that the length of
these characteristics depend continuously on the boundary points and directions. This
is a global geometrical property that requires the convexity of the domain, and uses
the fact that the Euclidean curvature of the characteristics are a priori bounded. The
convergence rate of the algorithm depends on the modulus of continuity of lengths of
characteristics with respect to the shooting direction.
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4.2 A Simple Iterative Procedure

The other method of constructing a minimizing sequence for the functional (14) for
p = 1 was proposed in [57]. It is based on the following minimization property.

Theorem 11 [NTT2] Let v ∈ H1(Ω) be such that |J|/|∇v| ∈ L∞+ (Ω). Let u ∈
H1(Ω) be the weak solution of the problem

∇ · ( |J|
|∇v|
∇u) = 0, in Ω,

u = v on ∂Ω.

Then the following inequalities hold∫
Ω

|J||∇u|dx ≤
∫

Ω

|J||∇v|dx, (23)

∫
Ω

|J||∇u|dx ≥
∫

Ω

|J|
|∇v|
|∇u|2dx, (24)

1

2

∫
Ω

(|J||∇v| − |J|
|∇v|
|∇u|2) ≤

∫
Ω

(|J||∇v| − |J||∇u|)dx (25)

≤
∫

Ω

(|J||∇v| − |J|
|∇v|
|∇u|2)dx.

The equality in either (23) or (24) holds if and only if u = v.

This result gives rise to a simple iterative procedure. Let (f, |J|) ∈ H1/2(∂Ω)×L2(Ω)
be an admissible pair. We start the iterative process with a harmonic function u0 with
the trace f on ∂Ω. Let un−1 ∈ H1(Ω), such that

|J|
|∇un−1|

∈ L∞+ (Ω),

has been computed. Then we compute

σn =
|J|

|∇un−1|

and update the voltage potential as the unique solution to the Dirichlet problem

∇ · (σn∇un) = 0, in Ω,

un = f on ∂Ω.

Clearly, one need to ensure that each iteration satisfies |J|
|∇un−1| ∈ L∞+ (Ω). In two di-

mensions, an almost two-to-one boundary voltage f is sufficient for this to hold, and
further a posteriori sufficient conditions ensure convergence ( see [57]). The computa-
tional effectiveness of this algorithm is demonstrated in Figures 4 and 5.
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Figure 4: The conductivity images reconstructed by the simple iterative procedure:
the original image (left), after 5 iterates (middle), after 50 iterates (right).

Figure 5: The slices of conductivity reconstructed by the simple iterative procedure:
crosses - the initial approximation, squares - after 5 iterates, diamonds - after 50
iterates, stars - after 100 iterates. The latter almost coincides with the original con-
ductivity.
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4.3 An Alternating Split Bregman Algorithm

Let (f, |J|) ∈ H1/2(∂Ω)× L2(Ω). Consider the variational problem

argmin{
∫

Ω

|J||∇v|dx : v ∈ H1(Ω), v = f on ∂Ω}. (26)

Suppose this problem has a solution in H1(Ω). We construct some minimizing se-
quences as follows. Note that (26) belongs to a general class of problems

argmin{G(u) + F (Lu) : u ∈ H1(Ω)}, (27)

where L : H1 → H2 is a linear bounded operator, H1, H2 are real Hilbert spaces, and
G : H1 → R ∪ {∞} and F : H1 → R ∪ {∞} are proper, convex and lower semi-
continuous functions. Note that if for H1 = H1

0 (Ω), H2 = (L2(Ω))n, Lu = ∇u we fix
uf ∈ H1(Ω) with uf = f on ∂Ω and define F : (L2(Ω))n → R,G : H1

0 (Ω))n → R, such
that

F (w) =

∫
Ω

|J||w +∇uf |dx, G(u) = 0,

then the problem (26) can be written in the form (27). Exploiting the Bregman’s idea
(see [19]) to link the method of multipliers and dual ascent method, in [29] the so-called
alternating split Bregman algorithm was proposed to solve iteratively the problem (27)
by reducing it to the unconstrained minimization problems at each iterate

uk+1 = argmin{G(u) +
1

2
‖bk + Luk+1 − w‖2

2 : u ∈ H1},

wk+1 = argmin{F (u) +
1

2
‖bk + Luk+1 − w‖2

2 : w ∈ H2},

bk+1 = bk + Luk+1 − wk+1.

Unlike this approach, in [53] the dual problem for (27) was first formulated. This
problem is well suited to a Douglas-Rachford splitting method which, in turn, lead
naturally to the following alternating split Bregman algorithm for solving the problem
(26).

Let uf ∈ H1(Ω) with uf = f on ∂Ω.
Initialization. b0, d0 ∈ (L2(Ω))n.
Step 1. For k ≥ 1 solve

∇2uk+1 = ∇ · (dk(x)− bk(x)) in Ω uk+1 = 0 on ∂Ω.

Step 2. Update

dk+1 =


max |∇uk+1 +∇uf + bk| − |J|

λ
∇uk+1

+
+∇uf + bk|∇uk+1 +∇uf + bk|−

−∇uf , if |∇uk+1 +∇uf + bk| 6= 0

−∇uf , if |∇uk+1 +∇uf + bk| = 0

Step 3. Update
bk+1 = bk +∇uk+1 − dk+1.
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Figure 6: The conductivity images reconstructed from the interior data and non two-
to-one boundary voltage with N = 1, 5, 10, 30, 50, 100 Bregman iterates.

The convergence of this algorithm is established by the following

Theorem 12[MNT] Let Ω ⊂ Rn, n ≥ 2 be a bounded region with the connected C1, α
boundary ∂Ω. Assume that |J| > 0 a.e. in Ω, where J ∈ (L2(Ω))n is the current
density generated by conductivity σ ∈ Cα(Ω) by imposing the boundary voltage potential
f . Then the voltage potential ũ in Ω is the unique solution of the problem (26), and
the sequences bk, dk + ∇uf , and uk + uf generated by the alternating split Bregman
algorithm converge weakly to −J/λ,∇ũ, and ũ, respectively.

In Figure 6 we demonstrate the computational effectiveness of this algorithm even
for the non two-to-one boundary data.

4.4 On Constructing The Regularizing Algorithms

Applying Tikhonov’s regularization for constructing minimizing sequences for a general
class of functionals associated with the nonlinear PDEs was first proposed in [42] (see
also [26]). In particular, regularizing the variational problem (26) also makes sense,
because the corresponding functional is not strictly convex and non-differentiable. In
[69] for the pair (f, |J|) ∈ H1/2(∂Ω) × L2(Ω) (not necessarily admissible) and for δ ≥
0, ε > 0 the following variational problem was considered

argmin{Fδε[u] : u ∈ H1(Ω), u = f on ∂Ω}, (28)

where

Fδε[u] =

∫
Ω

|J|max{|∇v|, δ}dx+ ε

∫
Ω

|∇u|2dx. (29)

Theorem 13[TN] Let |J| ∈ L2(Ω), |J| ≥ 0, and the number ε > 0 be fixed. Then the
functional (29) is weakly lower-semicontinuous in H1

0 (Ω and the variational problem
(28) has a unique solution.

Moreover, the following stability result takes place.

Theorem 14[TN] Let (f, |J|) ∈ H1/2(∂Ω) × L2(Ω) be admissible and essinf(|J|) ≥
α for some α > 0. Then there exists a number δ > 0, such that (1) ∀{|J|m ⊂
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L2(Ω)}, |J|m → |J| in L2(Ω) if one choose εm → 0, so that

lim
m→∞

‖|J| − |J|m‖2

εm
= 0,

and ∀m let uεm be the solution of

argmin{Fδεm [u[: u ∈ H1(Ω), u = f on ∂Ω}.

Then
lim
m→∞

infFδεm [uεm ] = lim
m→∞

infFδ0[uεm ] =

min{Fδ0[u] : u ∈ H1(Ω), u = f on ∂Ω} = min{F00[u] : u ∈ H1(Ω), u = f on ∂Ω};
(2) ∃{uεk} : uεk → u∗ in Lq(Ω), u∗ ∈ Lq(Ω) ∩BV (Ω), 1 ≤ q < n/(n− 1), n/geq2;
(3) if u∗ ∈ H1

0 (Ω) ∩ C(Ω) then u∗ is the voltage potential corresponding to the pair
(f, |J|.

Based on linearization of the power density operator (see [11]) in [12] the Dirichlet
problem for the weighted 0-Laplace equation was numerically solved by the Levenberg-
Marquardt iteration utilizing single and multiple ”measurements”Wi[σ] = σ|∇ui|2, (i =
1, 2, ...,m) in Ω, such that

∇ · (σ∇ui) in Ω,

ui = fi on ∂Ω.

Assuming σ ∈ H l(Ω), σ > 0, l > n/2 and fi ∈ H l+1/2(∂Ω), the power density oper-
ator was defined (see [11]) as a map F(σ) : H l(Ω) → H l(Ω;Rm), σ → (Wi), and its
linearization - as the system

∇ · (δσ∇ui) +∇ · (σ∇δui) = 0,

δσ|∇ui|2 + 2σ∇ui · ∇ui = δWi.

Then the stability estimate [12] is given by

C−1
s ‖δσ − δσ̃‖Hs(Ω) ≤ ‖δF − δF̃‖Hs(Ω;Rm)

≤ Cs‖δσ − δσ̃‖Hs(Ω),

where Cs = const > 0, s > n/2.
Note that it follows from the theory of iterative methods for approximate solutions

of inverse problems (see, e.g., [7]) that in order to update the conductivity at the kth
iterate σk one can minimize the Tikhonov functional

T [σ] = ‖W −F(σk)−F
′
(σk)(σ − σk)‖2

H2
+ αk‖σ − σk‖2

H1
,

where αk are parameters of regularization, H1, H
2 are Hilbert spaces, and F ′ is the

Frechet derivative of F . It results in the Levenberg-Marquardt algorithm

σk+1 = σk + [F ′(σk)∗F
′
(σk) + αkI]−1F ′(σk)∗(W −F(σk)),

where I is the identity operator. It should be mentioned that this algorithm produces
only the α-sequences approximating the sought solution if αk do not depend on a priori
information about ”measurements” W , particularly, about the level of noise. The
analytical study of rates of convergence can be found in [7].
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