
EURASIAN JOURNAL OF MATHEMATICAL
AND COMPUTER APPLICATIONS
ISSN 2306–6172
Volume 2, Issue 2(2014) 92–101

SOME REGULARITIES AND OBJECTIVE LIMITATIONS OF
IMPLEMENTING SEMANTIC PROCESSING ALGORITHMS ON

COMPUTING SYSTEMS WITH MASSIVE PARALLELISM

N.L. Verenik, Y.N. Seitkulov, A.I. Girel, M.M. Tatur

Abstract In the article hardware implementation approaches when building applied intel-
ligent systems is briefly described, the problem to achieve high efficiency by the low cost
is presented. Authors propose to develop semantic problem-oriented ASIP, whose architec-
ture, data format and instruction set are presented in the paper. As the base architecture
SIMD-architecture is used. Basic principles of functioning are considered. Several architec-
ture limitations and objective regularities are given. Usage example of processor for solution
of the pathfinding in graph problem is briefly presented.

Key words: semantic information processing; semantic network; ASIP; massive parallel
processing.

AMS Mathematics Subject Classification: 68R10

1 Introduction

One of the most promising approaches to formalize the functioning of the custom
intelligent system is the use of semantic networks by means of which knowledge of the
system (knowledge base of the system), as well as intelligent information processing
algorithms (used by this system) may be represented. Basically the semantic network
is a certain graph structure, the elements of which are given an additional meaning.
Computer system, on the basis of which a semantic network operates, is usually a
so-called graph-dynamic machine [1], it is a software or hardware system, the internal
state of which is represented by a graph. Information processing in such a system
is interpreted as a graph-dynamic process, i.e. the process of change of the system
internal graph structure, which may include not only changes in the internal state of
graph elements, but also the change of graph configuration (adding or removing vertices
and/or arcs in the graph).

In practice, in the process of the application intelligent system development the
semantic network programming model is usually used, this model is implemented on
a general-purpose computer system (PC), which is obviously significantly reduces the
overall cost of the system and often is the best solution. However the use of general-
purpose processors has a number of scalability limitations [2], [3]. In the case of imple-
mentation of supercomplex intelligent systems, which have an extremely high demands
for performance or maximum knowledge base value, supercomputers can be used [4],
[5], but this is often impossible because of the high cost of such a system. Moreover
mass and dimensions parameters of supercomputers, increased maintenance charge (al-



Some regularities and objective limitations 93

location of special premises, cooling , etc.) and the high complexity of the attendants
can be related as obvious disadvantages of them.

Another well-known solution is the use of parallel general-purpose systems, such
as the GPU [6], clusters, cloud computing, which allows to achieve much better per-
formance versus conventional general-purpose processors while maintaining a relatively
low cost of the entire system. One of the drawbacks of such systems is the fact that they
were originally designed to solve another kind of problems rather than the intelligent
treatment tasks.

Alternative solution proposed by the authors of this work is to develop a problem-
oriented ASIP [7]. Because of the initial focus on the solution of semantic processing
problems it is possible to achieve better efficiency in comparison with one-stop solutions
(general-purpose processors and general-purpose parallel processors) with maintaining
a low total cost. There is a brief description of the developed architecture, instructions
set and processor data format in the article, it also provides the information about the
objective regularities and limitations of the processor implementation.

2 Problem-oriented semantic processor

The work [8] illustrates how the problems of semantic analysis can be reduced to
the problems in graph theory, in particular, how an custom semantic network can
be represented by a graph of a regular structure. In turn, the problems of graph
theory mostly relate to combinatorial problems, which in practice can only be solved
by the introduction of a number of restrictions in the initial problem situation. Such
restrictions are imposed until the time to solve the problem reaches the necessary
maximum permitted value. As a result, the deduced solution is meaningful only in the
context of application problem for which it was designed.

At the same time, the development of a problem-oriented processor requires a cer-
tain period of time, and consequently material costs. If such a project is focused only
on one particular problem, it will never reach economic efficiency. Therefore, from the
very beginning it is necessary to lay a certain unification in the development of the
processor architecture, it means to direct processor to solve a certain class of intricate
problems [7].

The authors propose to implement hardware support for basic operations used in
the graph theory algorithms, it means to perform efficiently search operations of graph
elements and operations at sets of graph elements. Actually, the processor of the
architecture proposed can be regarded as a complex associative memory.

2.1 Processor architecture

Figure 1 illustrates a block diagram of the processor. As the base architecture SIMD-
architecture (Flynn’s taxonomy) is used. The obvious advantages of this architecture
are simplicity of connections between modules, the lowest hardware costs, a high level of
modularity and, what is important, the scalability. So disadvantage is the large number
of connections in the circuit and caused by it low reliability (in case of damage of one of
the data buses), both of which is not significant in case of implementation on PLD. The



94 N.L.Verenik, Y.N.Seitkulov, A.I. Girel, M.M.Tatur

main problem is limited throughput (in particular in the time of data reading). On the

Figure 1: Processor block diagram

scheme the processor is represented by a single common control unit (CU), which reads
and decodes the original program instruction sequence (single instruction stream), and
by a set of processor units (PU), on which then the instructions are performed. CU
interacts with array of PU through global data buses of concurrently three types:

• Data Bus to read - the bus through which the current instruction is transmitted
simultaneously on all PU;

• Data Bus to write - the bus through which the serial data reading of processing
elements (bus with the time division) is performed;

• Control Bus - the set of control signals.

Each PU has its own local private memory, only this particular PU is responsible
for the interaction with it. PU are ganged among themselves by unidirectional local
connections by means of which there is a possibility of high-priority reading data from
the memory. Shared processor memory consists of the sum total of local memory of all
the PU.



Some regularities and objective limitations 95

Figure 2: Processor instruction structure

3.2 Data representation and addressing mechanism

Let’s examine the general mechanism of interaction with the processor memory. The
system of processor instructions is represented by only one command (see Figure 2),
which is used for both reading and writing data into the processor.

To perform the addressing (the selection of one or more elements of the processor
memory for performing the action), an instruction includes a bit mask MA and bit field
DA, their dimension coincides with the processor word. If there is a data point D0 in
the cell, then it is considered addressed (selected, active), when all the bits DA and
D0, marked by the mask MA are respectively equal, i.e. DAi = D0i for ∀i, i = 0, b− 1
(where b is processor bitwise), so that MAi = 1.

It is often required (eg., in case of read operation) to apply the action not to more
than one memory element. To select this mode the bit ’single cell’ is used. In this case
if more than one cell has been addressed, the choice of the cell for making a record will
be carried out according to the scheme of priorities. The priority itself is determined
by the sequence order in the scheme. For the simplicity, the cell that holds the most
left position in the line of PU (see Figure 1) can be considered as activated one.

The action of writing data into the cell’s memory also uses access through a mask,
in particular MD value defines the bits of the cell, which will be changed depending on
the current bit value according to some function f(D0i, DDi)⇒ D0i for ∀i, i = 0, b− 1 ,
such as MDi = 1. The selection of function is determined by the field ’operation type’.
At this stage simple assignment is expected to be implemented, and at least the basic
functions of binary logic (AND, OR, NOT).

Figure 3 illustrates a block diagram of PE. The structure of PE includes local
memory and combinational circuit performing the following operations:

• serial memory comparison with the input (the addressing mechanism described
above is performed);

• per-bit data writing into the cell;

• logical functions, which determine the actual value which is to be written into
the cell;

• interaction with neighboring PU (priority scheme);

• reading the data.



96 N.L.Verenik, Y.N.Seitkulov, A.I. Girel, M.M.Tatur

Figure 3: Processing unit block diagram

3 Some regularities and objective limitations

Key idea in the process of the processor developing is to keep the functional complexity
of PU as simple as possible, and as a result, it will allow to represent a huge number
of these elements in one single chip. At the same time, the processor must be of
general purpose to some extent (for providing the profitability of the project, as it
was explained earlier), and that naturally affects the structure of PU. Moreover, the
requirements imposed by a particular application program, for which processor is being
manufactured, can vary greatly from one system to another. Some systems require
maximum performance, for others, the maximum of the space of the stored memory is
primarily important, for the third the cost will be the main limiting factor.

To solve this problem the processor is to support specific settings for a specific
application system (application task), for which this processor is being manufactured.
For the architecture proposed, such a setting may be performed at several conceptual
levels. In particular, you can select the hardware configuration of the processor (se-
lection of processor data bit-width, the amount of PU, the local memory space) and
software configuration of the processor (a different interpretation of the processor data
format). Let’s stop on the hardware configuration of the processor, and go trough some
regularities and limitations of the architecture proposed.

1. Processor bit-width b - fully depends on the solved in a system problem. For
example, to keep the semantic network in the processor memory, memory cell must be
able to accommodate the representation of any custom network element. To represent
the graph vertex it is necessary to keep a certain unique identifier of the vertex and
the set of its properties (attributes) values. To represent the arc of the graph - it is



Some regularities and objective limitations 97

necessary to keep identifiers of two, which are incident to the arc, of vertices and to
some properties of the arc. Increased of processor bit-width b leads to:

• volume gain of PU local memory and then the extension of the PU memory
circuit;

• the gain of combinational circuit of PU control logic;

• reduction of execution speed of PU control logic (additional delays on multiplex-
ors, etc.);

• the gain of the instruction size (4 times faster than the processor bit-width b,
according to rough estimate);

• increase in the amount of data buses, and at the same time, increase of a total
complicity of circuit trace;

• increase in the cost of a single memory cell.

The cost of one memory cell of the processor can be taken as the cost of the chip
made divided by the total amount of memory cells, which carry the core value. In
fact, the cost change (increase or falling) is determined by the ratio of the area of
the combinational circuit (CC) of the processor (the whole control logic) to the area
occupied by its own memory elements (ME) of the processor:

K =
SCC

SME

Increase of the value of the variable K leads to the growth of the cost of one memory
cell, reduction of the value of it causes the impact of value.

2. The number of private memory elements M , per one PU. The increase of the
value of the variable M leads to:

• an increase in the local memory space of PU and, so the increase of the memory
circuit of PU;

• the increase of combinational circuit of PU control logic;

• the increase of the period of time spent by PU to perform the operation (the more
memory cells the PU includes, the more time the serial processing of it requires);

• the reduction of performance (the number of operations performed per one unit
of time);

• decrease in the cost of a single memory cell.

Obviously, to provide maximum system efficiency it is necessary to to reduce the
value of the variable M as much as possible, i.e.to reduce the number of memory cells
for PE, and thus to increase the total number of PE on the chip. However, it will be
accompanied by the rising one memory cell cost, which is not always valid



98 N.L.Verenik, Y.N.Seitkulov, A.I. Girel, M.M.Tatur

3. In most cases, the total amount of PE on the chip N is the derivative of the
processor bit-width b word value, local memory size M and the maximum allowed area
of the circuit SMAX , i.e. after selection of the particular value of the basic parameters
of the system, we place the maximum possible number of corresponding PU on the
chip:

S = SCC + SME → SMAX

In general case the increase of the amount of PU leads to:

• the increase of the total processor memory space;

• the increase of the processor efficiency (the bigger memory space is processed at
the same period of time);

• the increase of the amount of data buses, and at the same time, increase of a
total complicity of circuit trace.

It should be noted that the maximum number of PU is limited by certain maximum
number NMAX , it is determined by the presence of local links between PU (serial circuit
delays). The solution of this problem is not considered in the paper.

4 Pathfinding problem on semantic processor

In the work [9] on the base of the programming model of processor architecture pro-
posed the problem of finding the shortest path in the graph was solved. To solve the
problem the parallel algorithm was used, it was developed on the bases of Dijkstra’s
algorithm and wave algorithm.

4.1 Problem definition and solution

Given a weighted graph G(V,A) without loops and arcs of negative weight. The prob-
lem is to find the shortest path from a vertex of a graph G to all other vertices of the
graph. Let introduce the following notations:

• V - set of graph vertices;

• A - set of graph arcs;

• c[ij] - cost (weight, length) of arc ij;

• a - start vertex;

• U - set of processed graph vertices;

• W - set of graph vertices which represents the wave front;

• d[u] - at the end of algorithm it is equal to the distance of the shortest path from
vertex a to vertex u;



Some regularities and objective limitations 99

• p[u] - at the end of algorithm it contains the shortest path from vertex a to vertex
u.

As the result pseudocode of the proposed algorithm can be written as the following:

Algorithm 1 Pathfinding algorithm pseudocode
1: for ∀v ∈ V, v 6= a do
2: d[v]←∞, p[v]← ∅
3: end for
4: d[a]← 0, p[a]← a
5: U ← a, W ← a
6: while ∃u ∈ W do
7: W ← W \ {u}
8: for ∀v ∈ V, uv ∈ A do
9: if v /∈ U or d[v] < d[u] + c[uv] then
10: U ← U, v
11: W ← W, v
12: d[v]← d[u] + c[uv]
13: p[v]← p[u], v
14: end if
15: end for
16: end while

4.2 Implementation on semantic processor

Let’s briefly examine the example of program ’customization’ of the processor, the
topical point of which is to build an additional level of abstraction over the system of
processor instructions, that [level] tightly focused on solving the definite problem. To
achieve it, it is necessary to determine its own data format (definite bits of memory
cells are provided with the necessary sense) and define new instruction set, which works
in terms of the problem to solve. The performance of such an extended instruction
set can be implemented by an application programmer at one’s development level
or by a system programmer at CU processor level, which can be represented as a
reprogrammable controller.

Accordingly to the proposed parallel algorithm the data format was defined (see
Figure 4) and there is an extended list of commands below:

• init - the initial value for all the memory cells in accordance with the algorithm
used is set;

• createVertex - to create a vertex with the given identifier;

• createArc - to create an arc with the given identifier and the cost of the transi-
tion;

• setMinDistance - to set for a given vamdahlertex the minimum distance found
and identifier of the previous vertex (to be able to restore the path after);



100 N.L.Verenik, Y.N.Seitkulov, A.I. Girel, M.M.Tatur

Figure 4: Data format of PU when solving the pathfinding problem in the graph

• setWaveStartVertex - to set the flag of entry in the wave front for a given vertex;

• readVertex - to read the vertex by its ID;

• readNextVertexFromWavefront - to read the next vertex in the wave front;

• moveWavefront - to start the next generation of wave front;

• findAllOutputArcs - to find all the arcs going from a given node;

• readNextOutputArc - to read the next arc by the previously found.

5 Conclusion

The processor architecture, designed to solve graphs’ problems, and in particular, the
efficient performance of semantic data processing algorithms, was presented in the
paper. There were examined the basic principles of operation of the processor, the
data format and instruction set, the structure of the processing unit, some regularities
and objective limitations of implementing the processors of such an architecture. In
particular, it describes the most important parameters of the processor architecture, the
choice of values of which is actually a setting of an architecture for solving a particular
application problem.

As part of the development of the architecture proposed, the next stage of our re-
search will be the implementation of the architecture on the existing parallel platforms,
such as GPU (CUDA technology), cluster and FPGA for estimation of real gains in
performance and efficiency while solving the different routine problems from the field
of semantic analysis in comparison with solutions actively used today.



Some regularities and objective limitations 101

References
[1] Golenkov V.V. and Guliakina N.A., Graphodynamical models of parallel knowledge processing,

Proc. Int’l Conf. Open Semantic Technologies for Intelligent Systems (OSTIS’2012), - February,
2012, BSUIR, Minsk, (2012), p.23–52.

[2] Gene M. Amdahl, Validity of the Single Processor Approach to Achieving Large-Scale Computing
Capabilities, AFIPS Conference Proceedings, Vol.30(1967), p.483–485.

[3] John L. Gustafson,Reevaluating Amdahl’s Law,Communications of the ACM,Vol.31, Iss.5(1988),
p.532–533.

[4] W. D. Hillis,The Connection Machine,The MIT Press,Cambridge (1989).

[5] Hiroaki Kitano and Dan Moldovan,Semantic Network Array Processor as a massively parallel
computing platform for high performance and large-scale natural language processing, Proc. Int’l
Conf. on Computational Linguistics (COLING ’92),Vol.2,(1992), p.813–819.

[6] André R. Brodtkorb and Trond R. Hagen and Martin L. Sætra, Graphics processing unit (GPU)
programming strategies and trends in GPU computing, Journal of Parallel and Distributed Com-
puting, Vol.73, Iss.1(2013), p.4–13.

[7] Bairak S. and Adzinets D. and Tatur M. and Philipoff P. and Munoz M., Parallel processors
for intelligent systems development, Proc. Int’l Conf. Open Semantic Technologies for Intelligent
Systems (OSTIS’2012) - February, 2012, BSUIR, Minsk (2012), p. 135–140.

[8] Verenik N. and Seitkulov Y. and Tatur M., Development of ASIP for semantic information
processing, Electronics info, Vol.8(2012), p.95–98.

[9] Tatur M. and Seitkulov Y. and Verenik N. and Girel A.,Pathfinding on a Specialized Vector
Processor, ProcProc. Int’l Conf. Parallel and Distributed Processing Techniques and Applications
(PDPTA ’2013), Vol.1,(2013), p.711–716.

Nick L. Verenik, Alexey I. Girel,
Department of Computer Sciences ,
Belorussian State University of Informatics and Radioelectronics,
Minsk , Belarus,
220013, Brovka Str.,6.
Email: nick.verenik@gmail.com, alexey.girel@gmail.com;
Yerzhan N. Seitkulov,
Faculty of Information Technology,
L.N.Gumilyov Eurasian National University,
Astana, Republic of Kazakhstan,
010008, Mirzoyana Str., 2.
Email: erj@mail.ru;
Mikhail M.Tatur,
Department of Computer Sciences,
Belorussian State University of Informatics and Radioelectronics,
Minsk , Belarus,
220013, Brovka Str.,6.
Email: tatur@bsuir.by Received 25 Jan 2014, in final form 29 Mar 2014, accepted 5
Sep 2014


