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REGULARIZATION OF THE DECISION PROLONGATION
PROBLEM FOR PARABOLIC AND ELLIPTIC
ELLIPTIC EQUATIONS FROM BORDER PART
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Abstract. In this article continuation problems for parabolic and elliptic equations with
data on the part of the boundary are considered. These are a Cauchy problem for heat
transfer equation with data on part of boundary and a Cauchy problem for the Laplace
equation. The continuation problem is formulated as the operator equation Aq = f . To solve
the problem one has applied a gradient method for minimization of the objective functional
J(q) =< Aq − f,Aq − f >.

Having estimated the conditional stability, we studied the convergence rate of Landweber
iteration method. The study has shown that Landweber iteration method is a regularization
method with an iteration number as the regularization parameter. As the result, the formulae
to calculate the singular values of the continuation problem operator have been obtained.
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1 Introduction

In this article we offer a unified approach to regularization of continuation problem
for two types of equations of mathematical physics: parabolic and elliptic ones. For
the first time a similar iteration approach was proposed by V.A. Kozlov, V.G. Maz’ya
and A.V. Fomin in 1991 [20]. In our work we provide estimations of conversion rates
based on the functional gradient methods and of strong convergence using estimations
of conditional stability.

The continuation problems are related to inverse problems of mathematical physics.
Its theoretical framework has been set in publications of A.N. Tikhonov, M.M. Lavren-
tiev, V.K. Ivanov, as well as of their students and followers. In many inverse problems
the sought heterogeneities are located at a certain depth beneath a layer of the medium
with known parameters (in geophysics these are, as a rule, either homogeneous or lay-
ered media). In this case the problem of continuation of geophysical fields from the
land surface in the direction of the heterogeneity position becomes one of the important
tools is the hands of a practitioner.
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2 Estimations of conditional stability

2.1 Parabolic equations

Assume that you are observing a process of heat propagation in a medium (diffusion
process). At the same time one is measuring the heat (matter) flux and temperature
(matter concentration) in one part of the boundary of the domain under study, while in
another part such measurements are either impossible or too difficult to be performed.
Hence, one should determine the temperature (or matter concentration) inside the do-
main up to the inaccessibility boundary. Such problems are common for geophysics [4],
nuclear reactor theory, aeronautics [5, 9], heat exchange problems [2, 3] and so on.

Let us consider a two-dimensional mathematical model of this physical process.
A process of heat propagation in the domain Ω = {(x, y) : x ∈ (0, 1), y ∈ (0, 1)}

with the time t ∈ (0, T ), T ∈ R+ is described by an initial boundary value problem for
parabolic equation:

ut = uxx + uyy, (x, y) ∈ Ω, t ∈ (0, T ), (1)
u(x, y, 0) = 0, (x, y) ∈ Ω, (2)
ux(0, y, t) = 0, y ∈ (0, 1), t ∈ (0, T ), (3)
u(1, y, t) = q(y, t), y ∈ (0, 1), t ∈ (0, T ), (4)
u(x, 0, t) = u(x, 1, t) = 0, x ∈ (0, 1), t ∈ (0, T ). (5)

Here the function u(x, y, t) describes the medium temperature at the point (x, y) ∈ Ω
at the moment of time t ∈ [0, T ].

The problem of determining the function u(x, y, t) from the relations (1)–(5) is
direct problem.

The inverse problem can be formulated as finding q(y, t) in Ω× (0, T ) based on the
temperature measurements f(y, t) on the part of the boundary Ω

u(0, y, t) = f(y, t), y ∈ (0, 1), t ∈ (0, T ), (6)

Let us introduce the operator

Aq : q(y, t) = u(1, y, t) 7→ f(y, t) = u(0, y, t).

Here u(x, y, t) is the solution of the direct problem (1)–(5). The inverse problem (1)–(6)
to determine function q(y, t) can be written as the operator equation Aq = f .

Definition 1. Let the function u ∈ L2(Ω × (0, T )) be called a generalized solution of
the direct problem (1)–(5) if for any w ∈ H2,1(Ω× (0, T )) that meet the conditions

wx(0, y, t) = 0, y ∈ (0, 1)× (0, T ),

w(1, y, t) = 0, y ∈ (0, 1)× (0, T ),

w(x, 0, t) = w(x, 1, t) = 0, x ∈ (0, 1)× (0, T ),

w(x, y, T ) = 0, (x, y) ∈ Ω,
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the following equality is executed:

T∫
0

∫
Ω

u(wt + ∆w)dΩdt−
T∫

0

1∫
0

q(y, t)wx(1, y, t)dydt = 0.

In [16] it has been proved that the operator A acts from L2((0, 1) × (0, T )) to
L2((0, 1)× (0, T )) and is limited.

Theorem 2.1. (about well-posedness of the direct problem and existence of the trace
[16]) If q ∈ L2((0, 1) × (0, T )) the problem (1)–(5) has the only solution and the esti-
mations

‖u‖2
L2(Ω×(0,T )) ≤M1‖q‖2

L2((0,1)×(0,T )),

‖u(0, y, t)‖2
L2((0,1)×(0,T )) ≤M2‖q‖2

L2((0,1)×(0,T ))

are correct.
Here and elsewhere Mj, j = 1, 2, . . . stands for positive constants.

We introduce a adjoint problem:

ψt + ψxx + ψyy = 0, (x, y) ∈ Ω, t ∈ (0, T ), (7)
ψ(1, y, t) = 0, y ∈ (0, 1), t ∈ (0, T ), (8)
ψx(0, y, t) = µ(y, t), y ∈ (0, 1), t ∈ (0, T ), (9)
ψ(x, 0, t) = ψ(x, 1, t) = 0, x ∈ (0, 1), t ∈ (0, T ), (10)
ψ(x, y, T ) = 0, (x, y) ∈ Ω, (11)

where µ(y, t) ∈ L2((0, 1)× (0, T )) is given function.
So, analogous to the direct problem definition one can determine the solution of the

adjoint problem and prove the theorem about well-posedness of the adjoint problem
and existence of the derivative trace [16].

The operator equation Aq = f in this case should be solved through minimization of
the objective functional J(q) =< Aq− f, Aq− f > using Landweber iteration method:

qn+1 = qn − αJ ′qn, n = 0, 1, 2, . . . ,

where the descent parameter α ∈ (0, ‖A‖−2) and J ′qn turns out to be the gradient of
functional J(qn)

J ′q = 2A∗(Aq − f).

For numerical realization of Landweber iteration method we use the expression of
the gradient of functional [16]:

J ′(q)(y, t) = ψ(0, y, t),

where ψ(x, y, t) is the solution of the adjoint problem (7)–(11) in which

µ(y, t) = 2
[
u(0, y, t)− f(y, t)

]
.
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Theorem 2.2. (about functional conversion rate of the Landweber iteration method
[16, 14]) Let it be the exact solution qT ∈ L2((0, 1)× (0, T )) of the problem Aq = f for
f ∈ L2((0, 1) × (0, T )). Then the sequence {qn} has a functional convergence, so the
estimation

J(qn) ≤ M3‖q0 − qT‖2

n
, n = 1, 2, . . .

holds true.

2.2 Elliptic equations

Let us consider the following continuation problem for an elliptic equation:

uxx + L(y)u = 0, (x, y) ∈ Ω, (12)
u(0, y) = f(y), y ∈ D, (13)
ux(0, y) = 0, y ∈ D, (14)
u(x, y) = 0, x ∈ (0, h), y ∈ ∂D (15)

with the matching conditions

f(y) = 0, y ∈ ∂D. (16)

Here Ω = (0, h) × D, D ∈ Rn is the bounded domain with a Lipschitz boundary
∂D,

L(y)u =
n∑

i,j=1

∂

∂yi

(
aij(y)

∂u

∂yj

)
− c(y)u,

M4

n∑
j=1

ν2
j ≤

n∑
i,j=1

aij(y)νiνj,

∀νi ∈ R, aij = aji, i, j = 1, . . . , n,

0 ≤ c(y) ≤M5,

aij ∈ C1(D), c ∈ C(D).

Let us consider the ill-posed continuation problem (12)–(16) as the inverse problem
of the following direct problem:

uxx + L(y)u = 0, (x, y) ∈ Ω, (17)
ux(0, y) = 0, y ∈ D, (18)
u(h, y) = q(y), y ∈ D, (19)
u(x, y) = 0, x ∈ (0, h), y ∈ ∂D (20)

with the matching conditions:

q(y) = 0, y ∈ ∂D. (21)

In the direct problem (17)–(21) one has to find u(x, y) in the domain Ω for the
function q(y) set for a part of the boundary x = h of the domain Ω.
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The inverse problem is to determine q(y) from conditions of (17)–(21) and known
additional information

u(0, y) = f(y), y ∈ ∂D. (22)

To familiarize yourself with some the results based on the theory of direct and
inverse problems address to [14, 23].

Definition 2. [14] The function u ∈ L2(Ω) is called a generalized solution of the direct
problem (17)–(21) if for any w ∈ H2(Ω) which satisfy to

wx(0, y) = 0, y ∈ D,
w(h, y) = 0, y ∈ D,
w(x, y) = 0, x ∈ (0, h), y ∈ ∂D

the following equality is executed:∫
Ω

u(wxx + L(y)w)dxdy −
∫
D

q(y)wx(h, y) dy = 0.

Theorem 2.3. (about well-posedness of the direct problem [14]) If q ∈ L2(D) then the
direct problem (17)–(21) has unique generalized solution u ∈ L2(Ω) and the estimations
are true:

‖u‖2
L2(Ω) ≤M6‖q‖2

L2(D);

‖u(0, y)‖2
L2(D) ≤M7‖q‖2

L2(D).

Theorem 2.4. (estimation of the conditional stability, [14]). Let u(h, y), f ∈ L2(D).
If the continuation problem (12)–(16) has the solution u ∈ C2(Ω) then following esti-
mation is true [14, 21]∫

D

u2(x, y) dy ≤M8‖q‖2x/h
L2(D)‖f‖

2(h−x)/h
L2(D) , x ∈ (0, h).

Now, we consider a gradient method to solve the continuation problem for elliptic
equation. For that purpose consider the adjoint problem:

ψxx + L(y)ψ = 0, (x, y) ∈ Ω, (23)
ψx(0, y) = µ(y), y ∈ D, (24)
ψ(h, y) = 0, y ∈ D, (25)
ψ|∂D = 0, x ∈ (0, h). (26)

The problem consists in finding the function ψ(x, y) using given µ(y).

Theorem 2.5. (about well-posedness of the adjoint problem [14]) If µ ∈ L2(D) then
the problem (23)–(26) has unique generalized solution ψ ∈ L2(Ω) and the estimations
are true:

‖ψ‖2
L2(Ω) ≤M9‖µ‖2

L2(D);

‖ψx(h, y)‖2
L2(D) ≤M10‖µ‖2

L2(D).
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We introduce an operator

A : q(y)→ u(0, y),

where u(x, y) is the solution of the direct problem (17)–(21).
Therefore, the adjoint operator A∗ is expressed as

A∗ : µ(y)→ ψx(h, y),

where ψ(x, y) is a solution of the adjoint problem (23)–(26).
From theorem of 2.3 and 2.5 it follows that operators A and A∗ map
L2(D) to L2(D). Therefore, the inverse problem (17)–(22) can be written in the

operator form
Aq = f. (27)

To find the solution (27) we apply Landweber iteration method.
It should be noted that the gradient of functional J ′q is calculated based on the

formula: (
J ′q
)
(y) = ψx(h, y),

where ψ(x, y) is a solution of the adjoint problem (23)–(26), in which

µ(y) = 2
[
u(0, y)− f(y)

]
.

Theorem 2.6. (estimation of functional convergence rate). Let us the problem Aq = f
has the exact solution qT ∈ L2(D). Then the following estimation holds true

J(qn) ≤ M11

n
, n = 1, 2, . . .

Theorem 2.7. Let the problem Aq = f have the exact solution qT ∈ L2(D). Then
a sequence of solutions {un} of the direct problems (17)–(21) for the correspondent
iteration qn converge to the exact solution uT ∈ L2(Ω) of the problem (12)–(16) and
the following estimation is true [16]:∫

D

(un(x, y)− uT (x, y))2dy ≤M12n
x−h
h , x ∈ (0, h). (28)

The estimation (28) leads to uniqueness of the solution and conditional stability of
the continuation problem (12)–(16).

Theorem 2.8. Let the problem Aq = f have the exact solution qT ∈ L2(D). Let
‖f − f δ‖ ≤ δ and {qnδ } be an Landweber iteration sequence to solve the inverse prob-
lem (17)–(22) with the additional information unδ (0, y) = fδ(y) Then, to solve the
corresponding direct problem (17)–(21) the following estimation should be carried out
[16]: ∫

D

(uδn(x, y)− uT (x, y))2 dy ≤M13

(
β(n)δ + n

x−h
h

)
, x ∈ (0, h). (29)

Here uT ∈ L2(Ω) is the exact solution and

β(n) =
(1 + 2α‖A‖2)n−1 − 1

‖A‖
.
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Analogous results have been obtained for steepest descent and conjugate gradients
methods [16, 14].

The estimation (29) shows that the sequence {uδn} is regularizing one where n is
the regularization parameter. Actually, due to the fact that the fist member is going
monotonously to infinity, while the second in the same way to zero, at n → ∞, the
stopping criterion for the corresponding number of iterations n∗ can be selected based
on the following rule. Having differentiated the right part (29) with respect to n, one
finds the root nr of the following equation:

δ
ln(1 + 2α‖A‖2)

‖A‖
(1 + 2α‖A‖2)n−1 +

x− h
h

n
x−2h

h = 0 (30)

and can select the stopping number ns to be a natural number closest to the equation
root (30).

3 Analysis of singular values

When studying acoustic or electrodynamic problems, in many cases one shifts to har-
monic motions and the Helmholtz equation. In this section we are going to analyze the
singular values of a continuation problem operator for a complex-valued formulation
of the Helmholtz equation in a case of simple geometry.

A Cauchy problem for the Helmholtz equation is a well-known example of an ill-
posed problem. Its solution isn’t stable relative to the small variations of the Cauchy
data [13, 1, 14].

In [13] author has shown that estimation of conditional stability with respect to k
turns out to the best logarithmic estimation.

In [11, 12] it has been demonstrated that the ill-posedness of the Cauchy problem
for the Helmholtz equation depends on the wave number k and increases with its
growth. The numerical calculations using different methods have been presented in
the following publications, e.g.: a quasi-reversibility method [18], frequency space cut-
off [27], iteration methods [20, 15, 24, 30], regularization methods [8, 25, 26, 28].

Let us consider a continuation problem for the Helmholtz equation in a homoge-
neous medium for simple geometry:

∆u+ k2u = 0, x ∈ (0, h), y ∈ (0, π), (31)
u(0, y) = f(y), y ∈ (0, π), (32)
ux(0, y) = 0, y ∈ (0, π), (33)
u(x, 0) = u(x, π) = 0, x ∈ (0, h). (34)

Here
k2 = εω2 − iσω,

ω is a frequency, ε and σ are positive constants.
The continuation problem (31)—(34) ) includes determination of the function u(x, y)

in the domain x ∈ (0, h), y ∈ (0, π) based on the given boundary conditions (32)–(34).
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Now we formulate the continuation problem as an inverse with respect to the direct
problem:

∆u+ k2u = 0, x ∈ (0, h), y ∈ (0, π), (35)
ux(0, y) = 0, u(h, y) = q(y), y ∈ (0, π), (36)
u(x, 0) = u(x, π) = 0, x ∈ (0, h). (37)

The inverse problem in this case is finding the function q(y) based on the additional
information:

u(0, y) = f(y), y ∈ (0, π). (38)

To find the solution of the direct problem (35)–(37) we assume that q(y) is expan-
sible:

q(y) =
∞∑
m=1

q(m) sin(my)

The solution will be found, expressed as a Fourier series:

u(x, y) =
∞∑
m=1

u(m)(x) sin(my).

Solving a sequence of corresponding direct problems

u(m)
xx + k2

mu
(m) = 0, x ∈ (0, h), (39)

u(m)
x (0) = 0, u(m)(h) = q(m). (40)

Here
k2
m = εω2 −m2 − iσω.

We obtain the general solution of the equation (39), expressed as:

u(m)(x) = C1e
λmx + C2e

−λmx.

Here
√
−k2

m = ±λm, λm = αm + iβm and

αm =

√√
(m2 − εω2)2 + σ2ω2 +m2 − εω2

2
,

βm =

√√
(m2 − εω2)2 + σ2ω2 −m2 + εω2

2
.

Thus, the solution of the problem (39), (40) is expressed by the formula

u(m)(x) =
cosh(λmx)

cosh(λmh)
q(m).

In this case, the solution of the initial direct problem (35)—(37) is presented as a
Fourier series:

u(x, y) =
∞∑
m=1

cosh(λmx)

cosh(λmh)
q(m) sin(my).
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as well as the solution of the inverse problem (35)—(38):

q(y) =
∞∑
m=1

f (m) cosh(λmh) sin(my). (41)

Since the operator A is diagonal, the singular values are expressed as:

σm(A) =
1

|cosh(λmh)|
=

√
2√

cosh(2αmh) + cos(2βmh)
. (42)

Now, we consider a number of particular cases of singular values of operator A.
The singular values of electromagnetic field continuation problem operator (ε 6= 0

and σ 6= 0) are expressed as:

σm(A) =
1

|cosh(λmh)|
=

√
2√

cosh(2αmh) + cos(2βmh)
.

In case of the acoustic equation (ε 6= 0 and σ = 0) the singular values formula is
expressed as [12]:

σm(A) =


1

| cos(
√
kmh)| , m2 ≤ εω2,

1
cosh(

√
kmh)

, εω2 < m2.

We note that the singular values depend on the wave number k2
m = εω2 −m2 and

the ration of m, ε and ω [12]. In the case of m2 ≤ εω2 the singular values of the
operator A are limited to 1 from below. At the same time in the case of m2 > εω2 the
singular values decay to zero exponentially.

Now, let’s consider the parabolic equation (ε = 0 and σ 6= 0). In this case

σm(A) =

√
2√

cosh(2αmh) + cos(2βmh)
,

αm =

√√
m4 + σ2ω2 +m2

2
, βm =

√√
m4 + σ2ω2 −m2

2
.

In case of the Laplace equation (ε = 0 and σ = 0) the singular values decay
exponentially:

σm(A) =
1

cosh(mh)
.
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