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PARAMETER ESTIMATION IN DISTRIBUTED SYSTEMS:
OPTIMAL DESIGN
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Abstract We formulate a very general optimal design problem for the selection of best states
to observe and optimal sampling times and locations (i.e., selections of what, when, and where
to observe) for parameter estimation or inverse problems involving complex nonlinear partial
differential systems. A theoretical framework along with a detailed iterative algorithm for
implementation of the resulting methodology are proposed and the algorithm’s successful use
on several examples of wide interest are noted.
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1 Introduction

Usual discussions of inverse problems in the presence of uncertainty have been in the
context of a given set or sets of data carried out under various assumptions on how
(e.g., independent sampling, absolute measurement error, relative measurement error)
the data were collected. For many years now [4, 7, 20, 21, 22, 25, 26, 28] scientists
(and especially engineers) have been actively involved in designing experimental proto-
cols to best study engineering systems that include parameters describing mechanisms.
Recently with increased involvement of scientists working in collaborative efforts with
biologists and quantitative life scientists, renewed interest in design of the “best” ex-
periments to elucidate mechanisms has been seen [9, 11, 12, 13, 15, 16]. Thus, a major
question that experimentalists and inverse problem investigators alike often face is
how to best collect the data to enable one to efficiently and accurately estimate model
parameters. This is the well-known and widely studied optimal design problem for pa-
rameter estimation and is a most important step leading up to control design (sensor
and actuator design and placement).

Traditional optimal design methods (D-optimal, E-optimal, c-optimal) [7, 20, 21,
22] use information from the model to find the sampling distribution or mesh for
the observation times and locations in spatially distributed problems that minimizes
a design criterion, quite often a function of the Fisher Information Matrix (FIM).
Experimental data taken on this optimal mesh are then expected to result in accurate
parameter estimates. In many scientific fields where mathematical modeling is utilized,
mathematical models grow increasingly complex over time, possibly containing more
state variables and parameters, as the underlying governing processes of a system
are better understood and refinements in mechanisms are considered. Additionally, as
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technology invents and improves devices to measure physical and biological phenomena,
new data become available to inform mathematical modeling efforts. The world is
approaching an era in which the vast amounts of information available to researchers
may be overwhelming or even counterproductive to efforts. We outline a framework
based on the FIM for a system of partial differential equations (PDEs) to determine
when and where an experimenter should take samples and what variables to measure
when collecting information on a physical or biological process modeled by such a
dynamical system.

Inverse problem methodologies are usually discussed in the context of a dynami-
cal system or mathematical model when a sufficient number of observations of one or
more states (variables) are available. The choice of method depends on assumptions
the modeler makes on the form of the error between the model and the observations
(the statistical model). The most prevalent source of readily studied error is observa-
tion error, which is made when collecting data. (One can also consider model error,
which originates from the differences between the model and the underlying process
that the model describes. But this is often quite difficult to quantify.) This mea-
surement error is most often discussed in the context of statistical models. The three
techniques commonly addressed are maximum likelihood estimation (MLE), used when
the probability distribution form of the error is known; ordinary least squares (OLS),
for unknown error distributions with constant variance across observations; and gen-
eralized least squares (GLS), used when the variance of the data can be expressed as
a nonconstant function. Uncertainty quantification is also described for optimization
problems of this type, namely in the form of observation error covariances, standard
errors, residual plots, and sensitivity matrices. Techniques to approximate the variance
of the error are also included in these discussions.

In [12, 13], the authors develop an experimental design theory using the FIM to
identify optimal sampling times for experiments on physical processes modeled by an
ordinary differential equation (ODE) system in which scalar or vector data is taken.
The experimental design technique developed there is applied in numerical simulations
to the logistic curve, a simple ODE model describing glucose regulation, and a harmonic
oscillator example.

In addition to when and where to take samples, the question of what variables
to measure is also very important in designing effective experiments, especially when
the number of state variables is large. Use of such a methodology to optimize what
to measure would further reduce testing costs by eliminating extra experiments to
measure variables neglected in previous trials. In [6], the best set of variables for
an ODE system modeling the Calvin cycle [29] is identified using two methods. The
first, an ad-hoc statistical method, determines which variables directly influence an
output of interest at any one particular time. Such a method does not utilize the
information on the underlying time-varying processes given by the dynamical system
model. The second method is based on optimal design ideas. Extension of this method
is developed in [15, 16]. Specifically, in [15] the authors compare the SE-optimal design
introduced in [12] and [13] with the well-known methods of D-optimal and E-optimal
design on a six-compartment HIV model [1, 2, 3] and a thirty-eight dimensional model
of the Calvin Cycle [29]. Such models where there may be a wide range of variables
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to possibly observe are not only ideal on which to test the proposed methodology, but
also are widely encountered in applications. For example these methods have been
recently used in [17, 18, 19] to design optimal data collection in terms of the location
of sensors and the number needed for optimal design in electroencephalography (EEG)
in the recording of electrical activity along the scalp. The underlying models in these
applications are nonhomogeneous second order elliptic partial differential equations.
We turn to an outline of our design methodology for best times and locations and best
variables in estimation for general nonlinear PDE models.

2 Mathematical and Statistical Models
The methodology we present can be readily applied to problems involving ordinary,
partial and delay differential equations dynamics. Here we explore our experimental
design questions using a PDE mathematical model (we illustrate with a partial
differential equation that is first order in time and second order in space)

∂u

∂t
= F(t, x,u,

∂u

∂x
,
∂2u

∂x2
,θ), t ∈ [t0, tf ], x ∈ [x0, xf ] (1)

with appropriate boundary and initial conditions, where u(t, x;θ) is the m-vector of
state variables of the system generated using a parameter vector θ ∈ Rκθ . We define a
corresponding observation process

f(t, x;θ) = Cu(t, x;θ), (2)

where C is an observation operator that maps Rm → RM , whereM ≤ m is the number
of variables observed at a single sampling time and location. Of course the full state
observation involves M = m; however, this is most often not feasible (due to the
impossibility of or the expense in measuring all state variables such as in the plant
metabolite example with m = 38 states studied in [15]). In other cases (such as the
HIV examples studied in [9, 15]) we may be able to directly observe only combinations
(e.g., total CD4+ cell counts including both uninfected and infected cells) of the states.

In order to discuss uncertainty in parameter estimates, we formulate a statistical
model of the form (this corresponds to an ordinary or weighted least squares optimal
fit to data formulation)

Y (t, x) = f(t, x;θ0) + E(t, x), t ∈ [t0, tf ], x ∈ [x0, xf ], (3)

where θ0 is the hypothesized true values of the unknown parameters and E is a vector
random process that represents observation error for the measured variables. We make
the standard assumptions that the errors are uncorrelated and independent with diago-
nal covariances Var(E(t, x)) = V0(t, x) = diag(σ0,1(t, x)2, σ0,2(t, x)2, . . . , σ0,M(t, x)2), t ∈
[t0, tf ], x ∈ [x0, xf ]. Realizations of the statistical model (3) are written

y(t, x) = f(t, x;θ0) + ε(t, x), t ∈ [t0, tf ], x ∈ [x0, xf ].

When collecting experimental data, it is often difficult to take continuous measure-
ments of the observed variables; i.e., continuous measurements in t and x are often
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not possible or prove to be prohibitively expensive. Instead, we assume that we have
I × J = IJ observations at sampling points (ti, xj), i = 1, . . . , I, j = 1, . . . , J , in
periods [t0, tf ]× [x0, xf ]. We then write the observation process (2) as

f(ti, xj;θ) = Cu(ti, xj;θ), i = 1, . . . , I, j = 1, . . . , J, (4)

the discrete statistical model as

Y ij = f(ti, xj;θ0) + E(ti, xj), i = 1, . . . , I, j = 1, . . . , J, (5)

and a realization of the discrete statistical model as

yij = f(ti, xj;θ0) + ε(ti, xj), i = 1, . . . , I, j = 1, . . . , J.

Given a set of data yij, we could attempt to estimate θ0 in a process known as
the inverse problem. We will use this mathematical and statistical framework to
outline a methodology to identify sampling variables that provide the most information
pertinent to estimating a given set of parameters as well as the most informative times
and locations at which the samples should be taken. To simplify notation below we
shall introduce the notation zij = (ti, xj) for discrete data taken from z ∈ ΩZ =
[t0, tf ]× [x0, xf ]. The corresponding data (continuous and discrete) will take the form

Y (z) = f(z;θ0) + E(z), (6)

and
Y ij = f(zij;θ0) + E(zij), (7)

respectively. Below we will assume the data sets have been renumbered so that we may
write {zij}IJi,j=1 = {zl}Ll=1 ∈ ΩZ . Since the errors may in general be nonconstant, the
above formulation leads naturally to a weighted least squares formulation.

2.1 Formulation of the Optimal Design Problem

Several methods exist to solve the inverse problem. A major factor in determining
which method to use is additional assumptions made about E(z). It is common practice
to make the assumption that realizations of E(z) at particular time/spatial points are
independent and identically distributed (i.i.d.). If, additionally, the distributions de-
scribing the behavior of the components of E(z) are known, then a maximum likelihood
estimation method may be used to find an estimate of θ0. On the other hand, if the
distributions for E(z) are not known but the covariance matrix V0(z) (also unknown) is
assumed to vary over time and space, weighted least squares (WLS) methods are often
used. We propose an optimal design problem formulation using a general weighted
least squares criterion.

Let P1(ΩZ) denote the set of all bounded distributions on the set ΩZ . We consider
the generalized weighted least squares cost functional for systems with vector output

JWLS(θ;y) =

∫
ΩZ

[y(z)− f(z;θ)]TV −1
0 (z)[y(z)− f(z;θ)]dP1(z), (8)



74 H.T. Banks and K.L. Rehm

where P1 ∈ P1(ΩZ) is a general measure on the set ΩZ . For a given continuous data
set y(z), we search for a parameter θ̂ that minimizes JWLS(θ;y).

We next consider the more usual case of observations collected at discrete sampling
points (often it is quite unreasonable and/or expensive to take a large number of
samples in either time and/or space. If we choose a set of L time/spatial points
Z = {zij}IJi,j=1 = {zl}Ll=1, where zl ∈ ΩZ and take

P1 = PL
Z =

L∑
l=1

∆zl , (9)

where ∆a represents the Dirac measure with atom at a, then the weighted least squares
criterion (8) for a finite number of observations becomes

JLWLS(θ;y) =
L∑
l=1

[y(zl)− f(zl;θ)]TV −1
0 (zl)[y(zl)− f(zl;θ)].

Note here we do not normalize the time/space “distributions” such as (9) by a factor of
1
L
so that they are not the usual cumulative distribution functions but would be if we

normalized each distribution by the integral of its corresponding density to obtain a true
probability measure. A similar remark holds for the “variables” observation operator
distributions introduced below where without loss of generality we could normalize by
a factor of 1

K
when using K 1-dimensional sampling maps.

To select a useful distribution of sampling points and set of observation variables,
we introduce the M by κθ sensitivity matrices ∂f (z;θ)

∂θ
and the m by κθ sensitivity

matrices ∂u(z;θ)

∂θ
that are determined using the differential operator in row vector form

(∂θ1 , ∂θ2 , . . . , ∂θκθ ) represented by ∇θ and the observation operator defined in (2),

∇θf(z;θ) =
∂f(z;θ)

∂θ
= C ∂u(z;θ)

∂θ
= C∇θu(t;θ) = C∇u(z;θ). (10)

Using the sensitivity matrix ∇θf(z;θ0), we may formulate the Generalized Fisher
Information Matrix (GFIM). Consider the set (assumed compact) ΩC ⊂ R1×m of ad-
missible 1-dimensional observation maps and let P2(ΩC) represent the set of all bounded
distributions P2 on ΩC . Then the GFIM may be written

F (PL
Z , P2,θ0) ≡

∫
ΩZ

∫
ΩC

1

σ2(z, c)
∇T

θf(z;θ0)∇θf(z;θ0)dP2(c)dPL
Z (z) (11)

=

∫
ΩZ

∫
ΩC

1

σ2(z, c)
∇T

θ (cu(z;θ0))∇θ (cu(z;θ0)) dP2(c)dPL
Z (z).

In fact we shall be interested in collections of K 1-dimensional “variable” observation
operators and a choice of which K variables provide best information to estimate the
desired unknown parameters in a given model. Thus taking K different sampling maps
in ΩC represented by the 1×m-dimensional matrices Ck, k = 1, 2, . . . , K, we construct
the discrete distribution on ΩK

C =
⊗K

i=1 ΩC (the k-fold cross products of ΩC)

PK
S =

K∑
k=1

∆Ck , (12)



Parameter Estimation in Distributed Systems 75

where ∆a represents the Dirac measure with atom at a. Using PK
S in (11), we obtain

the GFIM for multiple discrete observation methods taken continuously over ΩZ given
by

F (PL
Z , P

K
S ,θ0) =

∫
ΩZ

K∑
k=1

1

σ2(z, Ck)
∇T

θ (Cku(z;θ0))∇θ (Cku(z;θ0)) dPL
Z (z)

=

∫
ΩZ

K∑
k=1

1

σ2(z, Ck)
∇T

θu(z;θ0)CTk Ck∇θu(z;θ0)dPL
Z (z)

=

∫
ΩZ

K∑
k=1

∇T

θu(z;θ0)CTk
1

σ2(t, Ck)
Ck∇θu(z;θ0)dPL

Z (z)

=

∫
ΩZ

∇T

θu(z;θ0)
K∑
k=1

(
CTk

1

σ2(t, Ck)
Ck
)
∇θu(z;θ0)dPL

Z (z)

=

∫
ΩZ

∇T

θu(z;θ0)
(
STV −1

K (z)S
)
∇θu(z;θ0)dPL

Z (z), (13)

where S = column(C1, C2, . . . , CK) ∈ RK×m is the set of observation operators de-
fined above and VK(z) = diag(σ2(z, C1), . . . , σ2(z, CK)) is the corresponding covariance
matrix for K 1-dimensional observation operators. Applying the distribution PL

Z as
described in (9) to the GFIM (13) for discrete observation operators measured con-
tinuously yields the discrete κθ × κθ Fisher Information Matrix (FIM) for discrete
observation operators measured at discrete times and locations given by

F (Z,S,θ0) ≡ F (PL
Z , P

K
S ,θ0) =

L∑
l=1

∇T

θu(zl;θ0)STV −1
K (zl)S∇θu(zl;θ0). (14)

This describes the amount of information about the κθ parameters of interest that is
captured by the observed quantities described by the sampling maps Ck, k = 1, 2, . . . , K,
defining S, when they are measured at the L time/spatial points in ΩZ .

The questions of determining the best (in some sense) S and L sampling points Z
are the important questions in the optimal design of an experiment. Recall that the
set of sampling points Z has an associated distribution PL

Z ∈ P̃1(ΩZ), where P̃1(ΩZ)
is the set of all bounded discrete distributions on ΩZ . Similarly, the set of sampling
maps S has an associated bounded discrete distribution PK

S ∈ P̃2(ΩK
C ). Define the

space of bounded discrete distributions P̃(ΩZ ×ΩK
C ) = P̃1(ΩZ)× P̃2(ΩK

C ) with elements
P = (PL

Z , P
K
S ) ∈ P̃. We may, without loss of generality, assume that ΩK

C ⊂ RK×m is
closed and bounded, and assume that there exists a functional J : Rκθ×κθ → R+ of
the GFIM (13). Then the optimal design problem associated with J is selecting a
discrete distribution P̂ ∈ P̃(ΩZ × ΩK

C ) such that

J
(
F (P̂ ,θ0)

)
= min

P∈P̃(ΩZ×ΩKC )
J (F (P,θ0)) , (15)

where J is assumed to depend continuously on the elements of F (P,θ0).
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The Prohorov Metric Framework [8] developed over the past decade and completed
in [14] provides a general theoretical framework for the existence of P̂ = P̂L,K in
P̃(ΩZ × ΩK

C ) (a general theoretical framework with proofs is developed in [8, 10, 14]).
The application of the Prohorov metric to optimal design problems formulated as
(15) is explained more fully in [12]: briefly, define the Prohorov metric ρ on the space
P̃(ΩZ×ΩK

C ), and consider the metric space (P̃(ΩZ×ΩK
C ), ρ). Since ΩZ×ΩK

C is compact,
(P̃(ΩZ × ΩK

C ), ρ) is also compact. Therefore an optimal distribution P̂ = P̂L,K in
P̃(ΩZ×ΩK

C ). Under appropriate assumptions one can guarantee consistency [14] of the
resulting estimator P̂L,K . More precisely, using this optimal distribution P̂ = P̂L,K in
the corresponding weighted least squares criterion JL,KWLS(θ;y) gives rise to an estimate
θ̂
L,K

for θ0. Following the consistency [27] arguments found in [14, Sections 3.3], one
can argue θ̂

L,K
→ θ0 as L → ∞, K → m (see Theorem 3.3.1 and its extension to

weighted least squares in Section 3.3.1 of [14]). An essential assumption is on the
sampling locations associated with Z which require that as L → ∞, the sampling
points zi,j = (ti, xj) “fill up” the region ΩZ – see condition (A5) of Section 3.3 in [14].
This is in some sense equivalent to P̂L,K → P0 = ∆θ0

in the Prohorov metric (i.e., in
distribution) as L→∞, K → m.

The formulation of the cost functional (15) may take many forms. We outline the
use of traditional optimal design methods, D-optimal, E-optimal, or SE-optimal design
criteria, to determine the form of J . Each of these design criteria are functions of the
inverse of the FIM (assumed hereafter to be invertible) defined in (14).

In D-optimal design, the cost functional is written

JD(F ) = det
(
(F (Z,S,θ0))−1

)
=

1

det (F (Z,S,θ0))
.

By minimizing JD, we minimize the volume of the confidence interval ellipsoid describ-
ing the uncertainty in our parameter estimates. Since F is symmetric and positive
semi-definite, JD(F ) ≥ 0. Additionally, since F is assumed invertible, JD(F ) 6= 0,
therefore, JD : Rκθ×κθ → (0,∞).

In E-optimal design, the cost functional JE is the largest eigenvalue of (F (Z,S,θ0))−1,
or equivalently

JE(F ) = max

{
1

eig (F (Z,S,θ0))

}
.

To obtain a smaller standard error, we must reduce the length of the principal axis
of the confidence interval ellipsoid. Since F is positive definite, all eigenvalues are
therefore positive. Thus JE : Rκθ×κθ → (0,∞).

In SE-optimal design, the cost functional JSE is a sum of the elements on the diag-
onal of (F (Z,S,θ0))−1 weighted by the respective parameter values [12, 13], written

JSE(F ) =

κθ∑
i=1

(F (Z,S,θ0)))−1
i,i

θ2
0,i

.

Thus in SE-optimal design, the goal is to minimize the standard deviation of the
parameters, normalized by the true parameter values. As the diagonal elements of F−1
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are all positive and all parameters are assumed non-zero in θ ∈ Rκθ , JSE : Rκθ×κθ →
(0,∞).

In [13], it is shown that the D-, E-, and SE-optimal design criteria select different
time grids and in general yield different standard errors. As we might expect these
design cost functionals will also generally choose different observation variables (maps)
[15] in order to minimize different aspects of the confidence interval ellipsoid.

3 Algorithmic Considerations

We complete our outline of design methods with a very brief discussion of algorith-
mic issues. In most choice-of-variable optimal design problems, one does not have a
continuum of measurement possibilities; rather, there are K∗ ≤ m possible variable
observation maps C. Denote this set as ΩK∗

C ⊂ RK∗×m. While we may still use the
Prohorov metric framework to guarantee existence and convergence of (15), we have a
stronger result first proposed in [6] that is useful in numerical implementation. Because
for a given K, K ≤ K∗, ΩK

C is finite, all bounded discrete distributions made from the
elements of ΩK

C have the form

PK
S =

K∑
k=1

∆Ck .

Moreover, the set P̃2(ΩK
C ) of all discrete distributions that use K sampling methods is

also finite. For a fixed distribution of sampling points PL
Z , we may compute using (14)

the set of all possible FIM F (Z,S,θ) that could be formulated from PK
S ∈ P̃2(ΩK

C ).
By the properties of matrix multiplication and addition, this set is also finite. Then
the functional (15) applied to all F in the set produces a finite set contained in R+.
Because this set is finite, it is well-ordered by the relation ≤ and therefore has a minimal
element. Therefore, for any distribution of sampling points PL

Z , we may find at least
one solution P̂K

S ∈ P̃2(ΩK
C ). Moreover, P̂K

S may be determined by a search over all
matrices S = column (C1, C2, . . . , CK) formed by K elements having support in ΩK

C .
Due to the computational demands of performing nonlinear optimization for L

sampling points and K observation maps (for a total of L + K dimensions), we solve
the coupled set of equations

Ŝ = arg min
{S|PKS ∈P̃2(ΩKC )}

J
(
F (Ẑ,S,θ0)

)
(16)

Ẑ = arg min
{Z|PLZ∈P̃1(ΩZ)}

J
(
F (Z, Ŝ,θ0)

)
, (17)

where S ∈ RK×m represents a set of K sampling maps and Z = {zl}Ll=1, zl ∈ ΩZ , is an
ordered set of L sampling points. These equations are solved iteratively as

Ŝi = arg min
{S|PKS ∈P̃2(ΩKC )}

J
(
F (Ẑi−1,S,θ0)

)
(18)

Ẑi = arg min
{Z|PLZ∈P̃1(ΩZ)}

J
(
F (Z, Ŝi,θ0)

)
, (19)
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where J is the D-, E-, or SE-optimal design criterion. We begin by solving for Ŝ1 where
Ẑ0 is specified by the user. The system (18)-(19) is solved until

∣∣∣J (F (Ẑi, Ŝi,θ0)
)
−

−J
(
F (Ẑi−1, Ŝi−1,θ0)

)
< ε or until Ŝi = Ŝi−1. For each iteration, (18) is solved using

a global search over all possible S as explained above. Since the sensitivity equations
cannot be easily solved for in the models chosen here and in [15, 16, 17, 18] to illustrate
this method, one can use a modified version of tssolve.m [5], which implements the
myAD package developed in [23]. Solving (19) requires using a nonlinear constrained
optimization algorithm. While Matlab’s fmincon is a natural choice for such problems,
as reported in [13], it does not perform well in this situation. Instead, we recommend
the optimization tool SolvOpt developed by Kuntsevich and Kappel [24].

Once either of the convergence requirements are met and Ŝ and Ẑ are determined,
one can compute standard errors using the asymptotic theory described in [14].
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