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ON GEOMETRIC ASPECTS OF CIRCULAR ARCS RADON
TRANSFORMS FOR COMPTON SCATTER TOMOGRAPHY
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Abstract If the classical line Radon transform (CLRT) has been a successful mathematical
model for conventional radiation imaging modalities such as Computed Tomography (CT),
Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomogra-
phy (PET), the circular arc Radon transform (CART) is a potential mathematical model
contender for Compton Scatter Tomography (CST). In this work we show that there are ac-
tually five classes of circular arcs on which Radon transforms can be defined and used as basis
for five distinct CST modalities. These circular arcs are cut out from circles characterized by
a fixed value of the power of the coordinate system origin. We also show how the five CART
can be mapped onto respective CLRT, so that inversion formulas as well as some properties
for function reconstruction, which are essential for working CST can be fully established.
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1 Introduction

The classical line Radon transform in R2 [1] (CLRT) has served as a mathematical
model for many tomographic imaging modalities using ionizing radiation such as Com-
puted Tomography (CT), Single Photon Emission Computed Tomography (SPECT)
and Positron Emission Tomography (PET). This integral transform has been thor-
oughly investigated over half a century and shown to display an impressive number
of properties. In imaging applications, its inversion formula provides the way to re-
construct quantities of interest, such as linear attenuation coefficient distribution in
CT, gamma emitter concentration density in SPECT and beta emitter concentration
density in PET.

In the mid-seventies, emerged the idea of collecting Compton scattered radiation
from an object illuminated by an external source of calibrated radiation [2]. The idea
made its way to the mid-nineties, when it was realized that wide angle collimators
at the source as well as at the detector should be used in order to collect scattered
radiation successively at various scatter energy [3]. This idea implies that the registered
scattered radiation flux density at the detector is proportional to the integral of the
object electron density along "isogonal" circular arcs starting from the point source
and ending at the detection point. This type of integral measurement generalizes the
integral measurement of object attenuation coefficient along propagation straight lines
starting from the point source and ending at the detection point. So it is clear that,
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to deal with Compton scatter tomographic imaging, there is a need to consider a new
Radon transform defined on a dense set of circular arcs. We shall call it circular arc
Radon transforms (CART). Of course, the set of circular arcs in the plane has a richer
structure than the set of straight lines. This means that there are many distinct classes
of CART. And as far as imaging processes are concerned, the CARTs are only of interest
when they dispose of an explicit inversion formula. Despite an earlier attempt to adapt
an inversion formula of A M Cormack [4] to a "linear" Compton scatter tomographic
modality [5], which does not quite describe the process of data acquisition, there was
no bona fide inversion formula for a realistic CST until 2010 [6, 7]. Subsequently a
second CST modality based on the inversion formula of a new CART was established
in 2011 [8] and discussed in [9].

The objective of this work is to present a systematic geometric approach to the
CARTs, which are relevant for CST, in order to uncover new insights on this subject.
The previous approach was successful in uncovering the relevant inversion formulas
but it relies on the solutions of a determining differential equation [8]. We believe the
present geometric approach to be more transparent because it is simpler and gives a
unified overview of the whole question.

This paper is structured as follows. Section 2 recalls the principles of radiation
tomographic imaging and shows how image formation leads to Radon transforms on
straight lines and circular arcs in the plane. Section 3 reviews elementary properties
of circles and circular arcs in the plane. In section 4, we introduce the definition of
the CART, study the mappings of the circular arcs to corresponding straight lines and
deduce the conversion of the CART into CLRT. Section 5 reports on the transfer of
CLRT properties to the CART, in particular inversion formulas and orthogonal function
expansions for function reconstruction. The following section 6 gives a description of
the CST modalities derived from the five studied CART as well as an elegant solution
to some incomplete data CST problems and suggests a multi-modal CST, capable of
providing a high-quality imaging for applications. A conclusion closes the paper with
some future perspectives of work.

2 Compton scatter tomography (CST)

The aim of this section is to show how an imaging process based on the mechanism of
Compton scattering leads to the concept of CART.

To appreciate the originality of this imaging process, we should compare it to the
conventional X-ray Computerized Tomography (CT). When a sharply collimated pencil
of ionizing radiation is directed to an object, it will traverse it. But its intensity will be
decreased at the detection site because of absorption in bulk matter as well as because of
scattering that sends astray radiation in all directions. If the incoming radiation pencil
is totally absorbed, no radiation will emerge from the scene hence it becomes totally
"invisible". Scattered radiation is precisely what makes the incident radiation pencil
"visible" from the side. This picture is commonly observed at optical wavelengths but
not at X- or gamma wavelengths. The idea of recording this scattered radiation to
reconstruct the interior of an object is what is called Compton scatter imaging. If this
occurs in a slice of the object, it is termed Compton scatter tomography (CST).
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Figure 1: CT and CST respectively CLRT and CART involving respectively line and
circular arc

Compton scattering of radiation by electric charges is best described in terms of
photons. When an incoming X or gamma photon of energy E0 strikes an electron at
rest, it will be deflected by an angle ω, called the scattering angle (see Fig. 1), from
its original direction and carries away a smaller energy E(ω), given by the so-called
Compton relation

E(ω) = E0
1

1− ε cosω
, (1)

where ε = E0/mc
2 and mc2 is the rest energy of the electron. Unlike existing radiation

tomographic modalities, which register only un-deflected photons (of energy E0), In
CST a detecting site collects the scattered photon flux density at energy E(ω). Using
the Compton differential cross-section, this quantity can be expressed essentially 1 as
the integral of the scatterer (electrons) density along a circular arc starting from the
point-source and ending at the detection site and subtending an angle (π − ω).

A scanning apparatus, called scatterometer, was build by Prettyman to implement
this idea [10], see Fig. 2. Data on a set of isogonal circular arcs was recorded and used
in image reconstruction. At the time only numerical methods for image reconstruction
were applied without great success. It was realized [11] already that in order to have
complete data, a set of rotated positions of the measurement device is necessary. This
means that more data should be generated by rotating the scatterometer, bringing up
the idea of a Radon transform defined on circular arcs. However, no inversion formula
was available a the time and this modality has remained dormant ever since.

Our interest in CST has stemmed from the idea of S J Norton [5], who has tried
to use the invertibility of the Radon transform on circles intersecting a fixed point,
introduced by A M Cormack in 1964, in a particular CST modality [4], designed by
him. However the electron density is integrated over the full circle. This means that
scattered photons of two different energies E(ω) and E(π−ω) are collected in a single
measurement. A correct way of getting the proper data would have limited the integra-
tion to one circular arc and leads to a CART, corresponding to one of the two scattered
energies E(ω) or E(π − ω), as proposed in [12], but again no inversion formula was
available for this case.

This situation has motivated the search for an inversion formula which can fit
the working of a rotating scatterometer. Because of global rotational symmetry, it is

1Apart from kinematical factors, not relevant for the mathematical problem considered here.
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Figure 2: A sketch of Prettyman scatterometer [9]

convenient to work with the so-called circular harmonic components (or angular Fourier
components) [13, 14, 15]. It was realized that, under a suitable change of variables and a
change of functions, the original inversion problem can be converted into the inversion
of the classical line Radon transform [6]. This elegant solution has encouraged the
search for all families of curves in plane on which a Radon transform can be defined
and brought back to the form of a classical line Radon transform (CLRT). This more
general problem was encoded in a differential equation, which was fully solved and has
led to a new CST modality [8].

In this work, we would like to use elementary geometry to present a unified structure
for Radon transforms on circular arcs that are invertible by back conversion to the
classical line Radon transform (CLRT). The interest lies in the fact that some of these
CART are good mathematical models for CST modalities.

3 Circles and Circular Arcs in the plane

In this section we recall some elementary properties of circles and circular arcs in the
plane, which are useful for the coming discussion.

3.1 The power of a point with respect to a circle

Circles in the plane depend on three parameters, e.g. the radius R, the two coordinates
of the center Ω. Of interest are families of two-parameter circles, such as circles centered
on a line or a circle, circles of fixed radius, circles going through a fixed point, etc. An
alternative way to impose a constraint on the parameters is to use the concept of power
of a point with respect to a circle, introduced by Jakob Steiner in 1830 [16] and to give
it a fixed value. Without loss of generality, the point may be taken as the coordinate
system origin O.

Definition 3.1. The power of O with respect to a circle of radius R and center Ω is
PO = (OΩ2 −R2).
PO gives the position of O with respect to the circle, see table below.
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PO > 0 O outside circle
PO = 0 O on circle
PO < 0 O inside circle

Then it is convenient to introduce a reference length p such that

PO = σ p2, with σ = (−1, 0, 1), (2)
OΩ = p τ with τ > 0,

R = p
√
τ 2 − σ.

Note that for σ = 1, one must have τ ≥ 1 since R ≥ 0.

Definition 3.2. Call Γp the disk of radius p and centered at O.

3.2 Circle and circular arc equations

Proposition 3.3. A circle Cσ(p, τ) of given PO = σ p2 and center at (OΩ, φ) has polar
coordinates equation

cos(θ − φ) =
1

2τ

(
r

p
+ σ

p

r

)
. (3)

As τ > 0, the reality of the circle requires that∣∣∣∣12
(
r

p
+ σ

p

r

)∣∣∣∣ ≤ τ. (4)

Proof. Just write down the standard circle equation in polar coordinates (r, θ) and
insert the definition of PO.

3.3 Circular arcs

In view of applications in CST, we shall be interested in circular arcs Cεσ(p, τ) on
Cσ(p, τ), that have end points S (the CST source site) and D (the CST detection
site) on the circle boundary of Γp. The parameter ε tells whether Cεσ(p, τ) is exterior
(ε = 1) or interior (ε = −1) to Γp. We discuss now the geometric properties of Cεσ(p, τ)
according to the value of σ. For simplicity, we put γ = (θ − φ).

Proposition 3.4. The set of all circular arcs Cεσ(p, τ), situated on circles Cσ(p, τ) of
fixed PO consists of three exterior (ε = 1) and of three interior (ε = −1) arcs with
respect to Γp. Their equation, in polar coordinates, for all values of (σ, ε), is

rεσ(γ) = p
(
ε
σ2−σ

2 (τ cos γ) + ε
σ2+σ

2

√
(τ cos γ)2 − σ

)
. (5)

The ranges of τ and γ are given in the following table, where γ0 is the angle under
which the chord SD is viewed from O.
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Circular arc (σ, ε) τ γ0 γ
(−1,±1) 0 < τ <∞ π/2 −π/2 < γ < π/2
(0,−1) 0 < τ < 1/2 —— −π/2 < γ < π/2
(0,+1) 1/2 < τ <∞ cos−1 1/2τ − cos−1 1/2τγ < cos−1 1/2τ

(+1,±1) 1 < τ <∞ cos−1 1/τ − cos−1 1/τ < γ < cos−1 1/τ

Proof.
• For σ = −1, PO < 0 labels the two circles C−1(τ, p) containing the origin O inside

their interior, see Fig. 3. They intersect Γp at points S and D situated on a diameter
of Γp. The left-hand-side of (4), when plotted against r, shows a discontinuity at r = p
for 0 < r < ∞. This curve is made up of two monotonic parts: one increasing for
0 < r < p and one decreasing for p < r <∞.

- the interior arc C−1−1(p, τ) has polar equation r−1−1(γ) = p
(√

τ 2 cos2 γ + 1− τ cos γ
)
,

with 0 < r−1−1 < p. r−1−1(γ) is the positive root of cos γ = 1
2τ

(
p
r
− r

p

)
.

- the exterior arc C1−1(p, τ) has polar equation r1−1(γ) = p
(√

τ 2 cos2 γ + 1 + τ cos γ
)

with p < r1−1 <∞. r1−1(γ) is the positive root of cos γ = 1
2τ

(
r
p
− p

r

)
.

Here −π/2 < γ < π/2 and 0 < τ < ∞. We observe that the arcs C±1−1(p, τ) are
inverse of each other in the circle Γp since r1−1(γ) r−1−1(γ) = p2.
• For σ = 0, PO = 0 labels all circles C0(p, τ) passing through O, which intersects

(resp. does not intersect) Γp if τ > 1/2 (resp. if τ < 1/2), see Fig. 6.
For τ > 1/2, this circle intersects Γp at S and D separated on Γp by an angle

2γ0 = 2 cos−1(1/2τ):
- the interior arc C−10 (p, τ) has the polar equation r−10 = 2pτ cos γ with (−π/2 <

γ < γ0)
⋃

(γ0 < γ < π/2).
- the exterior arc C10(p, τ) has the polar equation r10 = 2pτ cos γ, with −γ0 < γ < γ0.

For 0 < τ < 1/2, C0(p, τ)
⋂

Γp = ∅, we have r0 = 2pτ cos γ, with −π/2 < γ < π/2.
(4) is trivially satisfied: r is always smaller than the diameter 2pτ .

• For σ = 1, PO > 0 labels circles C1(τ, p) that are orthogonal to Γp. They intersect
Γp at S and D separated by an opening angle 2γ0, with cos γ0 = τ−1 and τ > 1, see
Fig. 8. SD is a chord of Γp. The left-hand-side of (4) for σ = 1, which is always
smaller than p, is a continuous smooth curve of r which is monotonically increasing in
0 < r < p and monotonically decreasing in p < r < ∞. Each range of r corresponds
successively to

- the exterior arc C11(p, τ) of equation r11(γ) = p
(
τ cos γ +

√
τ 2 cos2 γ − 1

)
, with

p < r11 <∞,
- the interior arc C11(p, τ) of equation r−11 (γ) = p

(
τ cos γ −

√
τ 2 cos2 γ − 1

)
, with

0 < r−11 < p.
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r±11 (γ) are the two positive solutions of the equation cos γ = 1
2τ

(r/p+ p/r). Here
−γ0 < γ < γ0 and 1 < τ < ∞. As r11(γ)r−11 (γ) = p2, the arcs C±11 (p, τ) are inverse of
each other with respect to Γp.

Corollary 3.5. The general expression of their line element is

dlCεσ(p,τ) = dr

√√√√ 1− σ
τ2

1− 1
4τ2

(
r
p

+ σ p
r

)2 , (6)

which is naturally independent of ε.

Proof: Use dlCεσ(p,τ) =
(
(drεσ(γ))2 + (rεσ(γ) dγ)2

)1/2
and equation (5).

Remark 3.6. Another class of circular arcs orthogonal to a line has been considered
by V P Palamodov in [17] for seismic tomography. However they are not suitable for
CST since they subtend an inscribed angle of fixed value π/2.

4 Radon transforms on circular arcs Cεσ(p, τ )
In view of CST, we consider Radon transforms on some of the Cεσ(p, τ) circular arcs.
The domain of Radon transforms on C−1σ (p, τ) (resp. C1σ(p, τ)) arcs, interior (resp.
exterior) to Γp is taken to be D(Γp), the Schwartz space of infinitely differentiable
function with compact support contained inside Γp (resp. S(R2\Γp) outside Γp).

4.1 Definition

Definition 4.1. Let f(r, θ) be a smooth integrable function in an appropriate domain
of R2. The Radon transform RCεσ(p,τ)f(τ, φ) of f(r, θ), for all (σ, ε), is given by

RCεσ(p,τ)f(τ, φ) =

∫
(r,θ)∈Cεσ(p,τ)

dlCεσ(p,τ) f(r, θ). (7)

where dlσ is the Cεσ(p, τ) arc measure (6).

In r-variable, eq. (7) reads

RCεσ(p,τ)f(τ, φ) =

∫ rmax(σ,ε)

rmin(σ,ε)

dr

√√√√ 1− σ
τ2

1− 1
4τ2

(
r
p

+ σ p
r

)2 ×
(
f(r, cos−1

(
1

2τ

∣∣∣∣rp + σ
p

r

∣∣∣∣)+ φ) + f(r,− cos−1
(

1

2τ

∣∣∣∣rp + σ
p

r

∣∣∣∣)+ φ)

)
. (8)

in which the integration bounds are given by

rmin(σ, ε) = σ2 p

(
1− ε

2
σ (τ −

√
τ 2 − σ) +

1 + ε

2

)
+ (1− σ2) p

1 + ε

2
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(9)

rmax(σ, ε) = σ2 p

(
1− ε

2
+

1 + ε

2
(τ +

√
τ 2 − σ)

)
+ (1− σ2) 2pτ.

(10)

In equation (8), the integration variable r is actually r(σ,ε).

4.2 Clue for solving the inversion problem

As far as mathematical imaging is concerned, a Radon transform without inversion
formula is of no use. The aim is now to find a way to establish an inverse formula
for the Cεσ(p, τ) circular arc Radon transforms RCεσ(p,τ) or (CART). To this end, we
follow A M Cormack’s idea, who initiated the use of particular point transformations
of the plane to map the posed inversion problem to the known inversion problem of
the classical line Radon transform (CLRT).

Historically, A M Cormack was the first to observe that the Radon transform on
circles going through the origin C0(p, τ) has the same structure as the classical Radon
transform and its inversion can be obtained in a very similar way [4]. In 1981, he
found two families of curves, which he called α-curves and β-curves and on which the
corresponding Radon transforms have inversion formulas similar to those of the line
and circle Radon transforms [18]. Later on, he also realized that because geometric
inversion connects the straight line L(s, φ)2 to the circle intersecting the origin C0(p, τ),
as well as α-curves to β-curves, inverse formulas for related Radon transforms are also
connected [19, 20]. Most importantly, he stated in [23] that the transformation

s→ sα and θ → (αθ), (11)

can be used to map the Radon transform on the α-curves to the classical line Radon
transform RL(s,φ). This observation was later reiterated by in [21], where it is observed
that the parabolic Radon transform can be brought back to the form of the classical
Radon transform.

Here, we pursue this idea for the Cεσ(p, τ) arc Radon transforms by finding the
appropriate point transformations of the plane which would map the Cεσ(p, τ) circular
arcs to lines L(s, φ) in the plane so that the Radon transforms on Cεσ(p, τ) circular
arcs can be re-expressed as classical line Radon transforms. The sought geometric
transforms are more general that the rigid motions of the plane, which leave the set
of straight lines as well as the set of circular arcs globally invariant. Once they are
found, a whole set of properties of the RCεσ(p,τ) may be directly deduced from those of
the classical line Radon transform RL(s,φ).

2s is the distance from O to the line L(s, φ) and φ is the angle made by the normal unit vector of
L(s, φ) with the Ox axis.



48 T. T. Truong

4.3 The radial mapping of Cεσ(p, τ) circular arcs to a line Lσ(sσ, φ)

Definition 4.2. Let

ρεσ = p
2p rεσ

|(rεσ)2 + σ p2|
1

(2− σ2)
, (12)

sσ =
p

τ

1

(2− σ2)
. (13)

Call Tσ the radial mapping
Tσ : r → ρ. (14)

Proposition 4.3. Tσ is a diffeomorphism from either (0, p) or (p,∞) to either (0, p)
or (0,∞) mapping a Cεσ(p, τ) circular arc to a straight line L(sσ, φ) of equation

ρεσ =
sσ

cos(θ − φ)
=

sσ
cos γ

, (15)

in an auxiliary polar coordinate system (ρ, θ), in which sσ is its distance to the origin
O and its normal unit vector makes the angle φ with the same fixed reference direction.

Proof. Equation (3) of the circles Cσ(p, τ) may be put under the form of equation
(15)3 using the definitions (13).

We now describe in some details the mappings Tσ for later use.

4.3.1 The radial transform T−1

For σ = −1, equation (12) becomes

ρ−1 = p

∣∣∣∣ 2pr

r2 − p2

∣∣∣∣ . (16)

ρ−1 is a smooth function of r monotonic increasing in [0, p[ and monotonic decreasing
in]p,∞[, see Fig. 3. T−1 is piece-wise invertible in each of these two intervals. Here
p represents a physical reference length. The two C±1−1(p, τ) circular arcs subtend a
common chord which is a diameter SD of Γp. Their polar equation, deduced from
equation (5) for σ = −1, is

r±1−1(γ) = p
(√

τ 2 cos2 γ + 1± τ cos γ
)
, (17)

where −π/2 < γ < π/2. T−1 maps these two circular arcs onto a straight line L(s−1, φ),
parallel to SD, at a distance s−1 = p/τ from the origin O, as shown in Figures 4 and
5.

3In [8], the equations of C±1(p, τ) circles are re-expressed as equation of C0(p, τ) circles instead of
lines.
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For τ > 1/
√

3, the line L(s−1, φ) intersects the outer arc C1−1(p, τ), but never inter-
sects the inner arc C−1−1(p, τ), see Fig. 4. The distance between the inner arc C−1−1(p, τ)
and the line L(s−1, φ) goes to zero only for τ → ∞. Graphically for a given γ, the
intersections of a radial line with the exterior arc C1−1(p, τ) and the line L(s−1, φ) are
shown pairwise (M,M ′) in Figures 4. There are no intersections of the interior arc
C−1−1(p, τ) with L(s−1, φ) , as shown in Fig. 5.

4.3.2 The radial transform T0

For σ = 0, equation (12) becomes

ρ0 =
p2

r
. (18)

T0 is just the geometric invertible inversion in the disk Γp, see Fig. 11. It maps the
circle C0(p, τ) of equation r = 2τ p cos(θ−φ), obtained from equation (3) for σ = 0, to
the straight line L(s0, φ). Here the problem has no natural basic length scale: Γp does
not play a special role for C0(p, τ).

Hence
- for 2τp > p, the circle C0(p, τ) of center Ω = (τp, φ) intersects Γp at points S

and D. The exterior arc C10(p, τ) is mapped onto a line segment SD internal to Γp at
a distance at a distance s0 = p/2τ < p from O. The interior arc C−10 (p, τ) is mapped
into the two half-lines, complement of SD in R2, see Fig.11-left.

- for 2τp < p, the circle C0(p, τ) of center Ω = (τp, φ) does not intersect Γp, it
will be transformed into a straight line intersecting OΩ at a distance s0 = p/2τ > p.
Consequently each circle C0(p, τ) contained in Γp will be mapped onto a full straight
line L(s0, φ) external to Γp, see Fig.11-right.

4.3.3 The radial transform T1

For σ = 1, equation (12) becomes

s1 =
p

τ
and ρ1 = p

(
2pr

r2 + p2

)
. (19)

ρ1 is a smooth function of r having a maximum at r = p and ρ1 ≤ p always. For
0 < r < p, ρ1 is monotonically increasing and for p < r < ∞, ρ1 is monotonically
decreasing, see Fig. 8.

The circle C1(p, τ) of equation

cos γ =
1

2τ

(
r

p
+
p

r

)
, (20)

is orthogonal to Γp and intersecting Γp at S and D, see Fig. 9. The resulting circular
arcs C±11 (p, τ) inside and outside Γp are given by the polar equation

r±11 (γ) = p
(
τ cos γ ±

√
τ 2 cos2 γ − 1

)
. (21)

They are mapped by T1 onto the segment SD on the line L(s1, φ). For a given γ, the
three intersections of a radial line from O with the arcs C±11 (p, τ) and SD ∈ L(s1, φ)
illustrate the mapping T1, see Fig. 9.
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Figure 3: Transformation T−1: plot of ρ−1 against r

Figure 4: Transformation T−1: intersections of the exterior arc C1−1(p, τ) with the line
L(s−1, φ) for τ > 1/

√
3 on left figure and no intersections with the exterior arc C1−1(p, τ)

for τ < 1/
√

3 on right figure

Figure 5: Transformation T−1: the interior arc C−1−1(p, τ) does not intersect the line
L(s−1, φ) for all τ > 0
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Figure 6: Transformation T0 or geometric inversion: plot of ρ0 against r

Figure 7: Transformation T0: relative positions of the circle C0(p, τ) (and C±10 (p, τ))
with respect to the line L(s0, φ)

4.4 Conversion of RCεσ(p,τ)f(τ, φ) to a classical line Radon trans-
forms

Theorem 4.4. For all (σ, ε) (except (0,−1)), the CART RCεσ(p,τ)f(τ, φ) may be con-
verted into a CLRT RL(sσ ,φ)f(sσ, φ).

Proof. Now via the transform Tσ, equation (8), giving the expression ofRCεσ(p,τ)f(τ, φ),
can be rewritten as a classical line L(sσ, φ) Radon transform as follows.

First we reexpress r(σ,ε) in terms of ρ(σ,ε). This amounts to invert eq. (12)

ρ(σ,ε) = p
2p r(σ,ε)

|r2(σ,ε) + σ p2|
1

(2− σ2)
. (22)

This operation yields

r(σ,ε) = p

(
ε
σ2−σ

2
p

ρ(σ,ε)
+ ε

σ2+σ
2

√
p2

ρ2(σ,ε)
− σ

)
1

(2− σ2)
. (23)
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Figure 8: Transformation T1: plot of ρ1 against r

Figure 9: Transformation T1: intersections of the two arcs C±11 (p, τ) with SD ∈ L(s1, φ)

By differentiating this equation, we obtain dr(σ,ε) in terms of dρ(σ,ε)

dr(σ,ε)
r(σ,ε)

= −
dρ(σ,ε)
ρ(σ,ε)

σ2
ε p
ρ(σ,ε)√
p2

ρ2
(σ,ε)

− σ
+ (1− σ2)

 , (24)

which is only valid for precise ranges of the parameters (σ, ε). Inserting eq. (23) and
eq. (24) into (8), we get

RCεσ(p,τ)f(τ, φ) =

∫ ρu(σ,ε)

ρl(σ,ε)

dρ(σ,ε)
ρ(σ,ε)

σ2
ε p
ρ(σ,ε)√
p2

ρ2
(σ,ε)

− σ
+ (1− σ2)

 √√√√ 1− σ
τ2

1− s2σ
ρ2
(σ,ε)

×

r(σ,ε)

(
f

(
r(σ,ε), cos−1

sσ
ρ(σ,ε)

+ φ

)
+ f

(
r(σ,ε),− cos−1

sσ
ρ(σ,ε)

+ φ

))
, (25)
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where r(σ,ε) is given in terms of ρ(σ,ε) by equation (23), the minus sign in equation (24)
has been absorbed by appropriately exchanging the order of the integration bounds,
which are

ρl(σ, ε) =
p

τ

1 + σ2

2
, (26)

ρu(σ, ε) = σ2 2p

1 + σ
+ (1− σ2)

2p

1 + ε
, (27)

and sσ is given by equation (13). The last step consist in making a change of functions
so that equation (25) appears in the form of a classical line Radon transform (CLRT).

First on the right-hand-side of equation (25), let

F (ρ(σ,ε), θ) =
1

ρ(σ,ε)

σ2 ε p√
p2 − σρ2(σ,ε)

+ (1− σ2)

 r(ρ(σ,ε)) f(r(ρ(σ,ε)), θ) (28)

and write
RCεσ(p,τ)f(τ, φ)√

1− σ
τ2

= RL(sσ ,φ)F (sσ, φ). (29)

Then equation (25) becomes

RL(sσ ,φ)F (sσ, φ) =

∫ ρu(σ,ε)

ρl(σ,ε)

dρ(σ,ε)√
1− s2σ

ρ2
(σ,ε)

(
F (ρ(σ,ε), cos−1

sσ
ρ(σ,ε)

+ φ) + F (ρ(σ,ε),− cos−1
sσ
ρ(σ,ε)

+ φ)

)
. (30)

This is precisely the expression of a CLRT of F (ρ(σ,ε), θ) on line L(sσ, φ).

Remark 4.5. What is established here is a R2 particular case of a more general result
due to V P Palamodov in [22], where it is shown that a very large class of Radon type
of integral transforms admit a reconstruction formula of the form of the classical line
Radon Transform (CLRT).

The next table shows how a Cεσ(p, τ) circular arc Radon transform (CART) is con-
verted into a specific problem of the RL(s,φ) classical line Radon transform (CLRT).
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RCεσ(p,τ) ε = −1 ε = +1

σ = −1 RL(s,φ): Full plane Problem RL(s,φ): Full plane Problem
0 < τ <∞ 0 < (s−1 ≤ ρ−1) <∞ 0 < (s−1 ≤ ρ−1) <∞

σ = 0 RL(s,φ): Interior Problem
1/2 < τ <∞ 0 < (s0 ≤ ρ0) < p

σ = +1 RL(s,φ): Interior Problem RL(s,φ): Interior Problem
1 < τ <∞ 0 < (s1 ≤ ρ1) < p 0 < (s1 ≤ ρ1) < p

These results will be important for function reconstruction in CART via the function
reconstruction in CLRT.

Remark 4.6. For (σ = 0, ε = −1), the interior C−10 (p, τ) arc is transformed by T0
(inversion in Γp) into the external parts (relative to Γp) of the straight line L(s0, φ)
which intersects Γp, see fig. 10. To the best knowledge of the author, no information
on this problem is available.

Figure 10: Inversion external half-lines into internal circular arc through O

Consequently there remains only five cases which are of interest for CST, for which
one can transfer the main properties of the classical line Radon transform (CLRT) to
the corresponding circular arc Radon transforms (CART).
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4.5 A sufficient condition

We have shown the existence of five families of circular arcs on which one may defined
five Radon problems that can be converted into two Radon problems: the interior and
the full plane Radon problems.

We now ask the question what are the curves, having the same symmetries as the
straight line, on which the expression of Radon transform can be brought back to the
form of a CLRT? The answer is given by

Theorem 4.7. A sufficient condition for the Radon transform on curves C(s, φ) of
polar equation s = g(r) cos(θ−φ), where g(r) is an unknown odd function and (s, φ) ∈
R× S1 to be brought back to the form of Radon transform on straight lines (CLRT) is(

1

g2(r)
−
(
r g′(r)

g2(r)

)2
)

= Const. (31)

Proof. Using the integration line element of the curve C(s, φ)

dlC(s,φ) =

√√√√1 + s2

((
r g′(r)

g2(r)

)2

− 1

g2(r)

)
dr√

1− (s/g(r))2
, (32)

the Radon transform of a function f(ρ, θ) on this curve is

RC(s,φ)f(s, φ) =

∫ rmax

rmin

dr

√
1− s2H(r)√

1− (s/g(r))2

(
f(r, cos−1(s/g(r)) + φ) + f(r,− cos−1(s/g(r)) + φ)

)
,

(33)
where

H(r) =

(
1

g2(r)
−
(
r g′(r)

g2(r)

)2
)
, (34)

and (rmin, rmax) are deduced from the curve C(s, φ) equation and fixed according to
desired conditions. Now compare this equation with the CLRT of f(ρ, θ) on a line
L(s, φ) at a distance s from the origin such that its normal unit vector makes an angle
φ with the fixed axis Ox, which is

RL(s,φ)f(s, φ) =

∫ ∞
s

dρ√
1− (s/ρ)2

(
f(ρ, cos−1(s/ρ) + φ) + f(ρ,− cos−1(s/ρ) + φ)

)
.

(35)

We see that a sufficient condition for (33) to take the form of a classical line Radon
transform is that the factor

√
1− s2H(g−1(ρ)) should be independent of ρ, orH(g−1(ρ)) =

Constant. Since g has the dimension of a length, we put Constant = σ/s, where s is a
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reference length, here chosen equal to the distance s from the straight line to the origin
O for simplicity. This implies solving the equation(

1

g2(r)
−
(
r g′(r)

g2(r)

)2
)

=
σ

s2
, (36)

where σ = (−1, 0, 1).

Lemma 4.8. Equation (36) admits the solutions g = gσ

gσ(r/s) = s
(1 + σ2)rs

r2 + σ s2
and gσ(s/r). (37)

Proof. This equation is invariant under the substitutions

g → −g (38)
r → 1/r. (39)

Setting h(r) = s/g(r), which is a dimensionless ratio, we obtain a first order separable
differential equation

dh(r)√
h2(r)− σ

= ± dr
r
. (40)

The solution clearly depends on only one constant and may be written under the form

hσ(r/s) =
1

1 + σ2

(r
s

+ σ
s

r

)
, and hσ(s/r). (41)

Hence the admissible functions g are of the type gσ given by equation (37). This implies
that the curves of equation

cos(θ − φ) =
s

gσ
, (42)

are just the circles Cσ(s, φ) and the line L(s, φ) 4.
Hence combining the two theorems (4.4,4.5), we have

Theorem 4.9. The only curves of R2 on which Radon transforms are defined and
convertible to Classical Line Radon Transforms (CLRT) are circular arcs on circles of
fixed value of the power of the coordinate origin O.

5 Transfer of properties from CLTR to CART
We are now in a position to transcribe the main properties of RL(s,φ)) to those of
RCεσ(p,τ). Table 4.4 shows that only the interior and the full plane CLRT have to be
considered. Precisely Cormack in [4, 13] has shown that the solution of the reconstruc-
tion problem for the interior and the full plane Radon transform is unique by inversion

4Compare with [8], where conversion from RCεσ with (σ = ±1, ε = ±1) to RC0 is done.
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of the integral equation for function circular harmonic components (or Fourier angu-
lar components). He overlooked at the time the instability of this inversion formula.
But later in [23], he produced a formula free of instabilities by including "consistency
conditions". Interestingly he also indicated that the function reconstruction problem
may be solved by orthogonal expansion of the function circular harmonic components,
pre-signaling the so-called Singular Value Decomposition reconstruction method. In
this section, we shall make use of the results on the interior and full plane CLRT to
make statements on the reconstruction problem of the five cases of circular arc Radon
transforms which are of interest for CST.

5.1 Support property

The Support Theorem for the CLRT states that, see e.g. [25], for f ∈ S(R2), if
RL(s,φ)f vanishes for all lines L(s, φ) ∈ R2 not intersecting a disk of finite radius, then
the support of f is contained in this disk. The proof is due to Helgason and Ludwig
based on the inversion formula of Cormack [27, 28] and Strichartz gave a proof for
compactly supported f in [29].

Since only in the case σ = −1 do we have the full plane CLRT, we can state that

Proposition 5.1. For f ∈ S(R2), if RC−1
−1(p,τ)

f(p, τ) vanishes on C−1−1(p, τ) arcs with

0 < τ0 < τ <∞, then the support of f is inside the disk of radius p(
√

1 + τ 20 − τ0) < p.
For f ∈ S(R2), if (resp. RC+1

−1(p,τ)
f(p, τ)) vanishes on C+1

−1(p, τ) arcs with 0 < τ0 <

τ <∞, then the support of f is outside the disk of radius p < p(
√

1 + τ 20 + τ0).
Proof. Just apply the radial transform T−1 to the CRLT Support Theorem.

Remark 5.2. Compare with [26], who treats the case of Radon transform on circles
centered on a fixed circle.

5.2 Range characterization

The range of the CLRT is fully characterized by the theorem of Helgason-Ludwig
[27, 28]. An equivalent form of this theorem has been formulated by A M Cormack
in [23] as consistency conditions on the circular harmonic components

(
RL(s,φ)f

)
l
(r)

of RL(s,φ)f(s, φ), the CLRT of f(r, θ) in the full plane. Note that usually f(ρ, θ) is
the transcription of a function f \(x, y) = f \(ρ cos θ, ρ sin θ), which is 2π-periodic and
expandable in θ-Fourier series. Now the circular harmonic components fl(r) (resp.(
RCε−1(p,τ)

f
)
l
(τ)) of f(r, θ) (resp. RCε−1(p,τ)

f(p, τ)) are given by

f(r, θ) =
∑
l∈Z

fl(r) e
ilθ and RCε−1(p,τ)

f(p, τ) =
∑
l∈Z

(
RCε−1(p,τ)

f
)
l
(τ) eilθ. (43)

Then equation (8) is replaced by the radial Radon integral equation (RRIE)(
RCε−1(p,τ)

f
)
l
(τ) =
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∫ rmax(−1,ε)

rmin(−1,ε)
dr

√√√√√ 1 + 1
τ2

1− 1
4τ2

(
r
p
− p

r

)2 cos

(
l cos−1

(
1

2τ

∣∣∣∣pr − r

p

∣∣∣∣)) fl(r), (44)

where the integration boundaries are given by equations (9,10). Hence for the case
σ = −1, a range consistency condition can be derived for the CART from that of the
CLRT, as

Proposition 5.3. The RCε−1
of a function f ∈ S(R2) satisfies the condition

∫ ∞
0

dτ

τ

(
p

τ

1

(2− σ2)

)k+1

(
RCε−1

f(τ)
)
l√

1− (σ/τ)2
= 0 (45)

for k = l − 2, l − 4, ..., > −1.
Proof. Use of known results for CLRT [23]:∫ ∞

0

ds sm−1
(
RL(s−1,φ)f

)
l
(s−1) = 0,

for m = l − 2, l − 4, ..., > −1, with s−1 = p/τ and equation (29).

5.3 Null space

Proposition 5.4. The null space of RCε−1
consists of the linear span of

fkl (r) =

√
p2 + ρ2(−1,ε)

ε p r (ρ(−1,ε))k−1
. (46)

where ρ(σ,ε) given in terms of r by equation (12).
Proof. The null space of RL(s,φ))f(s, φ) are known from Perry’s work [30]: functions

with circular harmonic component 1/rk have zero CLRT

(
RL(s,φ)f

)
l
(s) = 2

∫ ∞
s

dr
cos(l cos−1(s/r))√

1− (s/r)2
1

rk
= 0, (47)

if k = l− 2, l− 4, ... > −1. This implies that the null space of CLRT is the linear span
of these r−k. Then use equation (28) to get the result.

5.4 Reconstruction of functions for the CART with σ = −1

This Radon transform on exterior and interior Cε−1(p, τ) circular arcs is mapped onto
the full plane Radon transform on the line L((p/τ, φ), which has a closed form free
of instabilities reconstruction formula, given in [32, 23]. After transcription into our
notations, it reads

F (ρ(−1,ε), θ) =
1

2π

∫ 2π

0

dφ

∫ ∞
0

dτ
1

s−1 − ρ(−1,ε) cos(θ − φ)

∂

∂τ
RL(s−1,φ)f(s−1, φ). (48)
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The τ integration is understood as a principal value. Now using equations (22) and
(28) to re-express ρ(−1,ε) and F (ρ(−1,ε), θ) in terms of r(−1,ε) and f(r(−1,ε), θ) we get a
full closed form reconstruction formula for the RCε−1(p,τ)

CART transform

f(r(−1,ε), θ) = ε
p

π

p2 + r2(−1,ε)
|p2 − r2(−1,ε)|

∫ 2π

0

dφ

∫ ∞
0

dτ
1

1
τ
− 2pr(−1,ε)

|p2−r2
(−1,ε)

| cos(θ − φ)

∂

∂τ

τ RCε−1
(τ, φ)

√
1 + τ 2

.

(49)

In his paper [4], Cormack showed that the function reconstruction problem for the
full plane classical line Radon transform can be solved also by orthogonal expansion
techniques, which are the building blocks of the Singular Value Decomposition (SVD)
method for operators in Hilbert spaces. Here we shall not go into the details of the
SVD theory, which is detailed in [34], but simply give the orthogonal functions for the
expansion of the circular harmonic components fl(r) and

(
RCεσ(p,τ)f

)
l
(τ).

5.4.1 CLRT

For this task, we recall the orthogonal systems given by A M Cormack for the full plane
CLRT RL(s,φ)f(s, φ). He made the choice of input circular harmonic component Fl(ρ)
of some function F (ρ, φ), see [4]

Fl(ρ) = Skl (ρ) = ρl Llk(ρ
2), (50)

where Llk(x) is a generalized Laguerre polynomial, see [31], with the orthogonality
relation ∫ ∞

0

ρ dρ e−ρ
2

Skl (ρ)Skl (ρ) = δkk′
(l + k)!

k!
. (51)

Therefore Fl(ρ) may be expanded as

Fl(ρ) =
e−ρ

2

√
π

∞∑
k′=0

(−1)l+k
′
2l+2k′ k′! ak

′

l S
k′

l (ρ), (52)

where ak′l are the coefficients to be determined from the data.

Now the CLRT radial Radon integral transform of e−ρ2 Skl (ρ) is(
RL(s,φ) e−ρ

2

Skl (ρ)
)

(s) =

2

∫ ∞
s

dρ
cos(l cos−1 s/ρ)√

1− (s/ρ)2
e−ρ

2

Skl (ρ) =
(−1)l+k

√
π

k! 2l+2k
e−s

2

Hl+2k(s). (53)

The Hermite polynomials Hn(s) verify the following orthogonality relation∫ ∞
0

ds e−s
2

Hk(s)Hk′(s) = δk k′

√
π

2
2k k!, (54)
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where k and k′ must be of same parity. Hence the CLRT of Fl(ρ) takes the form

(RLF )l(s) = e−s
2
∞∑
k=0

akl Hl+2k(s). (55)

This means that the expansion coefficient akl may be obtained from the projection of
the Radon data on a Hermite polynomial

akl =
1√

π 2l+2k (k + 2l)!

∫ ∞
−∞

dsHl+2k(s) (RLF )l(s). (56)

Finally by putting the computed akl in equation (52), one reconstruct Fl(ρ) first and
then reconstruct F (ρ, θ) as an angular Fourier series.

5.4.2 CART

From these results, we can now derive the orthogonal functions for the RCε−1
Radon

problem. This is done by replacing ρ in the previous equations by ρ(−1,ε)

ρ(−1,ε) = p
2p r(−1,ε)
|r2(−1,ε) − p2|

, (57)

and work out the new orthogonality integration measure using

dρ(−1,ε) = −ε 2p2 (r2 + p2)

|r2 − p2|2
dr(−1,ε). (58)

The orthogonal system to be chosen is Skl (ρ(−1,ε)), which satisfies the orthogonality
relation

∫ 2p/(1−ε)

p(1+ε)/2

2p2 (r2 + p2)

|r2 − p2|2
dr(−1,ε) e

−
(
p

2p r(−1,ε)

|r2
(−1,ε)

−p2|

)2

Skl (p
2p r(−1,ε)
|r2(−1,ε) − p2|

)Sk
′

l (p
2p r(−1,ε)
|r2(−1,ε) − p2|

)

= δkk′
(l + k)!

k!
, (59)

with the weight exp−
(
p

2p r(−1,ε)

|r2
(−1,ε)

−p2|

)2

.

The reconstruction of fl(r(−1,ε)) follows the same pattern as for Fl(ρ): expansion of

fl(r(−1,ε)) in terms of Skl (p
2p r(−1,ε)

|r2
(−1,ε)

−p2|) with a pre-factor e
−
(
p

2p r(−1,ε)

|r2
(−1,ε)

−p2|

)2

as in equation

(52). Then the RCε−1
Radon transform of Skl (p

2p r(−1,ε)

|r2
(−1,ε)

−p2|) is the Hermite polynomial

Hl+2k(p/τ), which obeys the orthogonality relation∫ ∞
0

ds
p

τ 2
e−(p/τ)

2

Hk(p/τ)Hk′(p/τ) = δk k′

√
π

2
2k k!. (60)
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Inverting equation (28) for σ = −1, and replacing ρ(−1,ε) in terms of r(−1,ε) using
equation (22) also for σ = −1, we have

f(r(−1,ε), θ) = ε
2p (r2(−1,ε) + p2)

(r2(−1,ε) − p2)2
∞∑

l=−∞

Fl

(
p

2pr(−1,ε)
|r2(−1,ε) − p2|

)
eilθ, (61)

with the expansion

Fl

(
p

2pr(−1,ε)
|r2(−1,ε) − p2|

)
=

1√
π
e
−
(
p

2p r(−1,ε)

|r2
(−1,ε)

−p2|

)2

∞∑
k=0

(−1)l+k 2l+2k k! bkl S
k
l (p

2p r(−1,ε)
|r2(−1,ε) − p2|

),

(62)

where the expansion coefficient bkl is obtained as

bkl =
2√

π 2l+2k (k + 2l)!

∫ ∞
0

dτ
p

τ 2
(
RL(p/τ,φ)F

)
l
(p/τ). (63)

The reconstruction by orthogonal expansion for σ = −1 is therefore completed.

5.5 Reconstruction of functions for the CART with σ = 0, 1

The table of theorem 4.4 shows that these two CART are mapped onto the interior
problem of the CLRT. The same procedure as in previous subsection is applied. We
give first the orthogonal functions for the radial CLRT, which are slightly different
from those of A M Cormack [24].

The radial orthogonal system consists of the generalized Zernike polynomialsRk,λ

l (ρ)
which are defines as

R
k,λ

l (ρ) = ρl (1− ρ2)λ−1 Γ(l + 2k + λ)

k! (l + k)!
Gk(l + λ, l + 1; ρ2), (64)

where Gk(l + λ, l + 1; ρ2) are the shifted argument Jacobi polynomials of Courant-
Hilbert, see [31]. This choice is made to coincide with the radial Zernike polynomials
for λ→ 1. Their orthogonality relation is∫ 1

0

ρ dρ

(1− ρ2)λ−1
R
k,λ

l (ρ)R
k′,λ

l (ρ) = δkk′
1

2(l + 2k + λ)

Γ(l + k + λ)

(l + k)!

Γ(k + λ)

k!
. (65)

Their radial Radon transforms are Gegenbauer polynomials(
RL(s,φ)R

k,λ

l

)
l
(s) =

(−i)l (−1)
[l]
2 22λ−2B(k+λ, l+k+λ)

Γ(λ) (l + 2k)!

(k!)2
(1−s2)λ−1/2Cλ

l+2k(s), (66)

where B(x, y) is the Euler beta function and Cλ
l+2k(s) are Gegenbauer polynomials with

their corresponding orthogonality relation∫ 1

0

ds (1− s2)λ−(1/2)Cλ
l (s)Cλ

l′ (s) =
1

2
δll′

π 21−2λ Γ(l + 2λ)

l! (λ+ l) [Γ(λ)]2
, (67)
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for l and l′ either odd or even. We are in a position to treat the two cases σ = 0, 1.
From now on, to simplify notations we set p = 1 and give the corresponding or-

thogonal expansions for σ = 0, 1 and ε = ±1.

5.5.1 Case σ = 0, ε = 1

We substitute first ρ0 = 1/r(0,1) into equation (65) and get the orthogonality relation
in terms of r(0,1) ∫ ∞

1

dr(0,1)
r2(0,1)(r

2
(0,1) − 1)λ−1

R
k,λ

l (1/r(0,1))R
k′,λ

l (1/r(0,1)) =

δkk′
1

2(l + 2k + λ)

Γ(l + k + λ)

(l + k)!

Γ(k + λ)

k!
. (68)

We now set s0 = 1/2τ in equation (67)∫ ∞
1

dτ

2τ 2
(1− (1/4τ)2)λ−(1/2)Cλ

l (1/2τ)Cλ
l′ (1/2τ) =

1

2
δll′

π 21−2λ Γ(l + 2λ)

l! (λ+ l) [Γ(λ)]2
. (69)

5.5.2 Case σ = 1, ε = ±1

We substitute first ρ1 =
2r(1,ε)
1+r2

(1,ε
)
into equation (65) and get the orthogonality relation

in terms of r(1,ε). The orthogonality relation (65) becomes now∫ 1

0

r(1,ε) dr(1,ε)
(1 + r2(1,ε))

2λ−5

(1− r2(1,ε))2λ−3
R
k,λ

l (
2r(1,ε)

1 + r2(1,ε)
)R

k′,λ

l (
2r(1,ε)

1 + r2(1,ε)
) (70)

=
1

4
δkk′

1

2(l + 2k + λ)

Γ(l + k + λ)

(l + k)!

Γ(k + λ)

k!
,

with s0 = 1/τ and consequently∫ ∞
1

dτ

τ 2
(1− (1/τ)2)λ−(1/2)Cλ

l (1/τ)Cλ
l′ (1/τ) =

1

2
δll′

π 21−2λ Γ(l + 2λ)

l! (λ+ l) [Γ(λ)]2
. (71)

6 Applications of CART to CST

6.1 Five CST modalities arising from five CART

As mentioned in the introduction, a two-parameter family of circular arcs among the
five studied above may serve to define a CST modality. The calibrated mono-energetic
radiation source is at the end S of the circular arc and the detection site D is at its
other end point. For the σ = −1-modality, S and D are on a rotating diameter of Γp.
But for the σ = (0, 1)-modalities, S and D are moving on the circle boundary of Γp,
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separated by an angle 2γ0 < π. The five CST modalities are specified by the range of
the Compton scattering angle ω given by the following table in terms of the geometric
parameter τ , the opening angle γ0.

Arc (σ, ε) τ γ0 ω(ε = −1) ω(ε = +1) sσ
(−1,±1) 0 < τ <∞ π/2 ω = cot−1 τ ω = − cot−1 τ s−1 = p| tanω|

0 < ω < π/2 π/2 < ω < π
(0,+1) 1/2 < τ <∞ cos−1 1/2τ ω = 2γ0 s0 = p cos(ω/2)

0 < ω < π
(+1,±1) 1 < τ <∞ cos−1 1/τ ω = π/2− γ0 ω = γ0 + π/2 s1 = p sinω

0 < ω < π/2 π/2 < ω < π

Three modalities with (σ = −1,+1, 0, ε = 1) are particularly suited for for large
objects, the scanning being done on one side (in particular on objects immersed in a
medium), as in [5, 33], see Figures 11 and 12. For small objects, there are two scanning
modalities with (σ = ±1, ε = −1) which can accommodate a circular radiation shielding
belt, see Figures 13. They may be suited for medical imaging.

6.2 Solving indirectly the incomplete data problem for the CART

6.2.1 In (σ = −1, ε = −1) CST modality

The table in theorem 4.4 shows that the full RC−1
−1(p,τ)

corresponds to the full plane
RL(s,φ) problem: because s−1 = p tanω with 0 < ω < π/2, we have 0 < s−1 < ∞.
Now it is observed that for small scattering angles ω (or τ = cotω), data acquisition
is problematic and a cut-off ω0 (or τ0 = cotω0) must be set up. Then the correspond-
ing CLRT problem is just the exterior CLRT problem, for which Perry has given a
solution [30]. Thus we get the surprising result that the circular arc Radon transform
in an annulus (or radii p and p(

√
1 + τ 2 − τ) < p) has an exact inversion solution by

orthogonal functions expansion. See left image of Fig. 14.

6.2.2 In (σ = −1, ε = 1) CST modality

Similarly in the case of external scanning with σ = −1, there may be a cut-off π/2 <
ω0 < π, again the corresponding CLRT is the exterior RL(s,φ) problem. The scanning
circular arc is receding farther and it is necessary to stop somewhere with the cut-off
ω0. Now for s−1 = p | tanω| with π/2 < ω < π, we have also 0 < s−1 < ∞. Hence we
get a circular arc Radon transform in an annulus (or radii p and p(

√
1 + τ 2 + τ) > p),

which has an exact inversion solution by orthogonal functions expansion. See right
image of Fig. 14.

6.2.3 In (σ = 1, ε = 1) CST modality

For the σ = 0, 1 modalities, a similar type of cut-off, near ω ∼ 0 or ω ∼ π will
correspond to a CLRT in an annular domain, for which no solution is known at present.
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Figure 11: σ = 0 CST scanning modality for exterior object

Figure 12: σ = −1 (left) and σ = 1 (right) CST scanning modalities for exterior object

Figure 13: σ = −1 (left) and σ = 1 (right) CST scanning modalities for interior object
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This is because s1 = sinω for ε = ±1 and 0 < s1 < p for the full range of ω from 0 to
π. However if we had a cut-off near ω ∼ π/2, then this missing data problem remains
a CLRT interior problem, albeit re-scaled.

6.2.4 In (σ = 0, ε = 1) CST modality

Here s0 = p cosω because ω = 2 cos−1(1/2τ). Thus for 0 < ω < π, we have 0 < s0 < p.
A cut-off around ω ∼ 0 would yield a re-scaled CLRT interior problem whereas a cut-off
around ω ∼ π would lead to a CLRT in an annular domain.

Figure 14: Representation of the incomplete data problem for CART with σ = −1 and
ε = ±1

6.3 Possibility for multiple modalities

The combination of C10(p, τ) and C11(p, τ) Radon transforms for external scanning, keep-
ing S fixed and measuring atD scattered radiation flux density at two different energies
may be viewed as a bimodal CST. This is easily realizable since all CST modalities
obtained here have radiation source and detection running on the rim of the disk Γp.
As the same electron density is reconstructed in any CST modality, this procedure dif-
fers from the usual bi-modal working where the attenuation map and the radio-tracer
activity density are simultaneous reconstructed.

One may even operate all three ε = +1 modalities on the same object simultaneously
or all combinations of two ε = −1 modalities simultaneously. This opens the possibility
of producing images of higher quality since features that are missed in one modality
may be recovered by another modality and put together at the end. In particular a
bimodal modality with σ = ±1 and ε = −1, would be advantageous in the region where
ω ∼ 0, because the scanning will be performed with circular arcs of opposite concavity
hence in a sense complementary information can be picked up.
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6.4 Physical factors in realistic CST

6.4.1 Beam photometric spreading

Radiation from a point source has the tendency to spread as it propagates outward with
a factor equal to the inverse square of the distance traveled: this is due to conservation
of radiation flux during propagation from point source.

Proposition 6.1. Let M be an arbitrary point on a Cεσ(p, τ) arc. Then the distances
SM and MD verify

SM2DM2 = (p2 − r2)2
(

1− σ

τ 2

)
. (72)

Proof. In triangles OSM and ODM , write down the cosine identity

SM2 = p2 + r2 − 2pr cos(γ0 − γ) (73)
DM2 = p2 + r2 − 2pr cos(γ0 + γ).

It is understood that r = r(σ,ε) for the five CST-relevant Cεσ(p, τ) arcs with the following
data on (σ, ε), τ and γ0 given by the following table

(σ, ε) γ0 τ

(−1,±1) π/2 0 < τ <∞
(0, 1) cos−1(1/2τ) 1/2 < τ <∞
(1,±1 cos−1(1/τ) 1 < τ <∞

Then eliminate γ from equation (73) to get the result of equation (72).
The CART on Cεσ(p, τ) arcs keep the main structure except f(r, θ) is replaced by

(p2 − r2)−2
(
1− σ

τ2

)−1
f(r, θ). The apparent divergence at r = p is not real since the

physical support of the function excludes these singularities. This has been reported
for (σ = ±1, ε = ±1) in [6, 8].

6.4.2 Attenuation

This is a harder problem. Propagating radiation undergoes always attenuation, which
is given by a function a(r, θ), which represents the coefficient of linear attenuation in
the traversed medium and should be determined independently. However it modifies
the structure of the expression of the CART, by multiplying the Cεσ(p, τ) arc integrand
by a known function representing the attenuation on each linear radiation propagation
path. This problem is not solved at present.

7 Conclusion
We have presented in this paper five classes of Radon transforms on circular arcs in the
plane that are of interest for Compton Scatter Tomography. They all have a structure
which can be converted back to one of the two classes of classical line Radon transform
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problems: the full plane and the interior problems. This formidable advantage stems
from the geometric fact that the circular arcs are all extracted from circles that have
fixed power of the coordinate system origin. Among the many properties that can be
transferred from the CLRT to the five CART is the solution to the function reconstruc-
tion problem either by explicit analytic inversion formulas or by orthogonal function
expansions in the full plane or in a finite disk. In addition this transfer has brought up
an elegant solution to the problem of incomplete data for some of the CART and has
suggested some CST multiple-modality which could provide high quality tomographic
images required in some applications.

Needless to say that future work perspectives include treatment of attenuated
CART, possible extension in three dimensions (such as the one in [35]), development
of finite versions of CART and conversion into efficient numerical algorithms for ap-
plications in medicine, non-destructive testing and evaluation as well as geological
prospection, etc.
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