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Abstract The non-stationary gas flow equation in homogeneous and heterogeneous media
is considered. Areas of this type are often encountered when considering gas production pro-
cesses from a gas-bearing reservoir. The heterogeneous structure of the reservoir can strongly
affect the extraction processes. For the numerical solution of the problem under considera-
tion, we construct an approximation of the equations on a coarse grid using the numerical
averaging method. The method allows us to solve the problem using less computational power
and in a shorter time. A numerical comparison of the results of solving the model problem
is carried out in a two-dimensional domain for the cases of linear and nonlinear variants of
the equations, as well as in a homogeneous and heterogeneous medium. The finite element
solution on a fine mesh was taken as a reference solution. The computational realization
was performed using the FEniCS library. The construction of the geometric computational
domain was performed in the program Gmsh. Paraview and the Matplotlib library in Python
were used for data visualization.
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1 Introduction

The quest to understand and manipulate the transport of gases through porous media
has been a topic of immense significance in various scientific and industrial domains.
From the extraction of hydrocarbons from reservoir rocks to the design of advanced
filtration systems, the ability to predict and optimize gas flow through porous materials
plays a pivotal role. In this pursuit, the concept of homogenization has emerged as
a powerful mathematical and computational tool, allowing researchers and engineers
to bridge the gap between microscale porous structures and macroscopic transport
phenomena.

To appreciate the significance of numerical homogenization in the gas filtration
problem, one must first understand the complexity of gas flow through porous media.
Porous materials, ranging from natural geological formations to engineered filtration
media, exhibit a hierarchical structure characterized by a multitude of interconnected
pores. The behavior of gases within these intricate pore networks is inherently influ-
enced by various factors, such as pore size, shape, connectivity, surface chemistry etc.
[1, 11].
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At the macroscopic level, the transport of gas through porous media is governed
by Darcy’s law, which relates the flux of gas to the pressure gradient [2, 10]. However,
the application of Darcy’s law is not always straightforward due to the heterogeneity
and complexity of real-world porous structures. Traditional approaches, which rely
on modeling on a very fine grid to resolve all heterogeneities in porous media, are
computationally expensive and often impractical for large-scale simulations.

Homogenization, a mathematical technique rooted in the theory of partial differen-
tial equations (PDEs), offers an elegant solution to this problem [12, 13, 14, 15]. The
fundamental idea behind homogenization is to replace the intricate microscale details
of porous media with effective macroscopic properties, simplifying the mathematical
description of gas flow [16]. This simplification enables the development of computa-
tionally efficient models that capture the essential behavior of gases in porous media
without explicitly simulating the pore-scale flow.

In the context of gas filtration, numerical homogenization allows researchers to
determine effective permeability tensors, which characterize the macroscopic gas trans-
port properties of the porous material. These tensors encapsulate the influence of
microscale pore geometry and are vital for predicting gas flow in heterogeneous media.
By employing numerical techniques such as finite element analysis (FEA) [9] or finite
difference methods [8], researchers can derive these effective properties, transforming
complex pore-scale problems into manageable macroscopic simulations.

In the paper, we present an algorithm based on the numerical homogenization
method for gas filtration problems in heterogeneous perforated media [7, 3]. The ef-
fective characteristics of the heterogeneous medium are calculated in local domains to
describe the process on a coarse grid. The gas filtration model is a nonlinear problem,
and to resolve the nonlinearity, we use the Picard iteration method [6, 5, 4]. In this
work, we present the numerical experiments for several problems with the different
physical properties.

The paper is organized as follows: Section 2 discusses the mathematical formula-
tions and concepts necessary to understand gas flow in porous media. The process
of solving the problem using the finite element method is given in Section 3. Section
4 is devoted to describing the numerical averaging method. Section 5 describes the
tests carried out, shows the final result, and analyzes the data obtained. In Section
6, we will summarize the main results of this paper and emphasize the importance
of the numerical averaging method to deepen our understanding of the advantages of
implementing mathematical models and solving problems with this method.

2 Problem formulation

The gas filtration equation (gas flow continuity equation) is represented in general form
as follows (we use the conditions of an ideal gas):

1. continuity equation

m
∂ρ

∂t
+ div(ρv) = 0, (1)
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2. equation of state

ρ =
P

R T
, (2)

3. Darcy’s law

v = −k

µ
grad(P ), (3)

x ∈ Ω, x = (x1, x2), 0 < t ≤ Tmax. (4)

We use the next notations in the mathematical model:

• ρ - gas density,

• P - gas pressure,

• R - universal gas constant = 520,

• T - temperature,

• v - flow velocity,

• k - reservoir permeability coefficient,

• µ - gas viscosity coefficient.

The differential equation of gas filtration (1)-(4) is a mathematical model of a
whole class of parabolic equations, and, in general, an infinite number of solutions can
be obtained by integration [17].

As a geometric condition in the investigated problem, a slice of a gas-bearing reser-
voir (plane) with producing wells represented as holes on the plane is shown in Figure
1:

Figure 1: Reservoir geometry Ω with boundary Γ and Θ.

We supplement the equation with the following initial condition:

P (x, 0) = Ps, 0 ≤ x ≤ l, (5)
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and we apply the next boundary condition:

−∂P

∂n

∣∣∣∣
C

= Cg, x ∈ C,
∂P

∂n

∣∣∣∣
Θ

= 0, x ∈ Θ,

P (x, t) = Pn, x ∈ Γ.

(6)

In our implementation, we use the following notations:

• Ps - initial pressure in reservoir,

• Pn - reservoir boundary pressure,

• l - length/width of reservoir,

• Cg - well production constant,

• C - well boundary,

• Γ - left reservoir boundary,

• Θ - remaining boundary.

3 Fine grid approximation

Next, we consider the fine grid approximation of the problem (1)-(6). We use the finite
element method with the Picard iteration method to resolve nonlinearity. We define
an unstructured triangular fine grid Mh, to take into account all perforations. The
problem is time-dependent, then, we note n as a number of time layers, τ as the time
step, and Tmax = nτ as the final time. We consider Nf as the number of elements in a
fine grid.

Next, we present a fine grid approximation using the finite element method. Be-
fore obtaining the finite element approximation of the model, we derive a variational
formulation of the problem. Therefore, we first define the standard Hilbert space of
scalar functions L2(Ω) with the scalar product and the obtained norm in this form

(P, v) =

∫
Ω

P (x)v(x)dx, ∥P∥ = (P, P )1/2.

We define the Sobolev space H1(Ω) of functions v such that v2 = |∇v2| is finitely
integrable in the domain of Ω [18]. After these steps, we can already define the spaces
for the test

V = v ∈ H1(Ω) : v(x) = 0, x = (x1, x2), x ∈ Γ,

and trial functions

V̂ = P ∈ H1(Ω) : P (x, t) = Ps, x = (x1, x2), x ∈ Γ.

Firstly, to solve the equation (1)-(4), we integrate the equation over the domain Ω and
multiply the test function v:∫

Ω

m

R T

∂P

∂t
v dx =

∫
Ω

∇ ·
( k

µ R T
P∇P v

)
dx.
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Next, we use integration by parts with the given boundary conditions, and for approx-
imation by time, we use an implicit time-difference scheme∫

Ω

m

R T

P n+1 − P n

τ
v dx+

∫
Ω

k

µ R T
P n+1∇P n+1∇v dx+

∫
C

Cgv ds = 0.

The problem is nonlinear, and we use the Picard iteration method to resolve nonlin-
earity, and the variational formulation will take the following form:∫

Ω

m

R T

P n+1
j+1 − P n

τ
dx+

∫
Ω

k

µ R T
P n+1
j ∇P n+1

j+1 +

∫
C

Cgv ds = 0,

where j denotes the Picard iteration number. Now let’s introduce new variables to
facilitate further calculations:

Cl =
m

R T
, Cr =

k

µ R T
.

Now we can write the variational form of the problem (1)-(6):

Cl

∫
Ω

P n+1
j+1 − P n

τ
v dx+ Cr

∫
Ω

P n+1
j ∇P n+1

j+1 ∇v dx+

∫
C

Cgv ds = 0, (7)

where P ∈ V̂ . We use the following stopping condition for the Picard iterations:

∥P n+1
j+1 − P n+1

j ∥ < ε,

where ε = 10−3 is the relative tolerance for convergence. And finally we divide the
obtained statement into bilinear

a(P, v) = Cl

∫
Ω

P n+1
j+1

τ
vdx+ Cr P

n+1
j

∫
Ω

∇P n+1
j+1 ∇v dx,

and linear forms
L(v) = Cl

∫
Ω

P n

τ
v dx−

∫
C

Cg v ds.

4 Numerical homogenization

The method consists of finding the effective coefficients on a coarse grid by solving
independent local problems for each section of the region grid by solving independent
local problems for each section of the domain (coarse grid cells)[13, 14, 19]. Let the
computational domain be partitioned into triangular elements, where MH and Mh - are
the coarse-scale and fine-scale computational meshes. In order to calculate the effective
coefficients used in solving the problem on the coarse grid, it is necessary to numerically
solve local problems in subareas Kj, where j is the number of the triangular element of
the coarse grid, MH = ∪jKj(j = 1, N,NH , - number of coarse mesh elements). Let’s
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write the approximation of the equation by the finite element method on a coarse mesh
MH∫

Ω

c∗
P n+1
j+1 − P n

τ
v dx−

∫
Ω

(k∗Cr P
n+1
j ∇P n+1

j+1 ,∇v)dx−
∫
C

Cg v ds = 0, ∀v ∈ V̂ . (8)

Here, the coefficients c∗ and k∗ are the effective coefficients, which are defined in cells
Kj, j = 1, N .
To calculate the effective characteristics, we will solve the following local problems in
the subdomain Kj:

−∇·(k∗Cr∇Φm) = 0, x = (x1, x2) ∈ Kj,

Φm = xm, x ∈ ∂Kj, m = 1, 2.
(9)

The effective coefficient k∗ will be calculated as follows:

k∗ =

[
k∗
11 k∗

12

k∗
21 k∗

22

]
, (10)

where the tensor components have the form

k∗
11 =

1

|Kj|

∫
Kj

Cr
∂Φ1

∂x1

dx, k∗
12 =

1

|Kj|

∫
Kj

Cr
∂Φ1

∂x2

dx,

k∗
21 =

1

|Kj|

∫
Kj

Cr
∂Φ2

∂x1

dx, k∗
22 =

1

|Kj|

∫
Kj

Cr
∂Φ2

∂x2

dx.

(11)

To calculate the average coefficient c∗ we will use the average value over the local
domain

c∗ =
1

|Kj|

∫
Kj

Cldx. (12)

The calculated coefficients c∗ and k∗ will be used in solving the problem (8) on a
coarse-scale grid. Thus, the computational algorithm for solving the problem can be
presented as follows:

• construct a large-scale computational grid MH ;

• in each local subdomain Kj, compute the effective characteristics c∗ and k∗ by
solving problem (9) and expressions (10)-(12);

• solve problem (8) on a coarse grid MH using the calculated coefficients.

5 Numerical results

In this section, we present a numerical experiment with the proposed algorithm of nu-
merical homogenization for the gas filtration problem. Due to the fact that the problem
under consideration is a model problem and serves to prove the work of the method,
we can directly modify the coefficients Cr, Cl, and Cg obtained earlier.

We will consider several cases of the problem:
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• Case 1. Linear equation with homogeneous coefficients of a two-dimensional
problem with Ω = [0, 10000]2, Cg = 3.826 ∗ 10−7;

• Case 2. Linear equation with heterogeneous coefficients of a two-dimensional
problem with Ω = [0, 10000]2, Cg = 1.913 ∗ 10−9;

• Case 3. Nonlinear equation with homogeneous coefficients of a two-dimensional
problem with Ω = [0, 10000]2, Cg = 3.826 ∗ 10−9;

• Case 4. Nonlinear equation with heterogeneous coefficients of a two-dimensional
problem with Ω = [0, 10000]2, Cg = 1.913 ∗ 10−15.

The following parameters were used for the numerical study of the error of the
considered method: m - 0.255, R - 520.0, T - 283.0, k - 0.203 * 10−12 (for Case 1 and
Case 3 ), µ - 0.02 * 10−3, Ps - 7.4 * 103, Pn - 7.4 * 106. For linear problems, Case 1
and Case 2 we use average pressure value over computational domain Ω Pavg =

Pn+Ps

2

instead of P n+1
j in (7), (8).

(a) (b)

Figure 2: (a) Computational mesh (blue - fine grid, red - coarse grid) (b) Heterogeneous
properties k for Case 2 and Case 4.
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Figure 3: Pressure distribution at different moments of time t = 1, 5 and 10. First
line: solution for Case 1 on a fine grid (number of unknowns Nf= 80844). Second line:
solution of the problem using the numerical homogenization method on a coarse grid
(number of unknowns Nc = 121).

Figure 4: Pressure distribution at different moments of time t = 1, 5 and 10. First
line: solution for Case 2 on a fine grid (number of unknowns Nf= 80844). Second line:
solution of the problem using the numerical homogenization method on a coarse grid
(number of unknowns Nc = 121).

Figure 5: Pressure distribution at different moments of time t = 1, 5 and 10. First
line: solution for Case 3 on a fine grid (number of unknowns Nf= 80844). Second line:
solution of the problem using the numerical homogenization method on a coarse grid
(number of unknowns Nc = 121).

To prove the correctness of the proposed algorithm, we compare the coarse grid so-
lution with the fine grid solution obtained by the finite element method. A comparison
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Figure 6: Pressure distribution at different moments of time t = 1, 5 and 10. First
line: solution for Case 4 on a fine grid (number of unknowns Nf= 80844). Second line:
solution of the problem using the numerical homogenization method on a coarse grid
(number of unknowns Nc = 121).

of the relative error in L2 norm was made using the following formula:

||e||L2 =

√∫
Ω
|Pc − Pf |2dx√∫
Ω
|Pf |2dx

,

where Pc and Pf are solutions on coarse and fine grids (reference solution). For the
reference solution, we take a fine grid with 80844 vertices and 157700 cells; for the
homogenized solution, we take a coarse grid with 121 vertices and 100 cells.

The calculations were performed using the FEniCS library [20]. The construction
of the geometric computational domain was performed in the program Gmsh [21].
Visualization of the results obtained during the solutions is performed in the Paraview
[22] program, as well as using the Matplotlib [23] library for Python [24]. The results
of calculations on fine and coarse grids are presented in Figures 3-6.

Time layer A B C D
1 1.442 1.654 1.266 1.537

5 0.265 0.497 0.517 0.750

10 0.271 0.348 0.325 0.563

Table 1: L2 errors at the time layer: A - Case 1, B - Case 2, C - Case 3, D - Case 4.

The pressure distribution is presented at different moments of time (1-st, 5-th, and
10-th time layers) for the cases: Case 1 at the Figure 3, Case 2 at the Figure 4),
Case 3 at the Figure 5, Case 4 at the Figure 6. The figures at the top line show the
pressure distribution in fine grid calculations with a large number of unknowns of the
system, while the figures at the bottom line show the solution on a coarse grid using
the numerical homogenization method. From the above results, we can see that the
solution on the coarse grid is almost equal to the solution on the fine grid. We can
see the full picture by looking at the Table 1, where we present a relative error in L2
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(a) (b)

Figure 7: L2 error in percent for solutions: (a) Case 1 (b) Case 2.

(a) (b)

Figure 8: L2 error in percent for solutions: (a) Case 3 (b) Case 4.

norm in different time layers for all test cases. And we show the error distribution by
time in Figures 7 and 8. From the results, we can see that the error of the proposed
algorithm is very small. Throughout the entire process, the error is less than 2%. At
beginning of the process, we observe large errors because of the influence of the initial
condition. Further, over time, the error decreases, which indicates the convergence of
the proposed algorithm. We can conclude that the solution of the gas filtration problem
by numerical homogenization allows us to significantly reduce the dimensionality of the
problem, while the solution error is very small compared to the solution on a fine grid.
The solution error for both linear and nonlinear equations with homogeneous and
heterogeneous mediums is less than 2%.

The number of Picard iterations performed to solve the problems is presented in
the form of Tables 2-3. The total number of iterations and the average number per
time layer are presented for several cases: Case 3 (Table 2), Case 4 (Table 3). In
the tables, the data in the first row shows iterations in fine grid calculations with a
large number of unknowns of the system, while the data at the bottom line shows the
iteration count on a coarse grid using the numerical homogenization method.
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Grid Total iterations Average iterations
Fine 201 20.1

Coarse 163 16.3

Table 2: Number of Picard iterations for the nonlinear homogeneous equation (Case
3 ).

Grid Total iterations Average iterations
Fine 224 22.4

Coarse 159 15.9

Table 3: Number of Picard iterations for the nonlinear heterogeneous equation (Case
4 ).

(a) (b)

Figure 9: Number of Picard iterations per time layer: (a) Case 3 (b) Case 4.

From the above results, we can conclude that using the numerical homogenization
method greatly reduces computational costs by solving with less iteration. For a non-
linear equation with homogeneous medium (Case 3 ), it makes ≃18.9% difference, and
for a nonlinear equation with heterogeneous medium (Case 4 ), it’s a ≃29% difference.

5 Conclusion

In this paper, the numerical homogenization method for the non-stationary gas flow
equation has been investigated. A comparison has been made between the numeri-
cal homogenization method for solving the problem on a coarse mesh, containing 121
nodes, and the finite element method on a fine mesh, containing 80844 nodes. The re-
sults obtained illustrate the small error in modeling using the homogenization method
for both homogeneous and heterogeneous regions. The numerical experiment showed
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that the numerical homogenization method has an advantage in nonlinear problems
using the Picard iteration method. Numerical homogenization required fewer Picard
iterations than the fine grid solution. An algorithm based on the numerical homoge-
nization method for the gas filtration problem allows us to obtain a solution with high
accuracy on a very coarse mesh.
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