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1 Introduction

The study of contact problems involving thermopiezoelectric materials represents a
multifaceted research area in the field of materials science and engineering. In these
problems, we study the interactions that occur when two or more bodies come into
contact, with one or more of these bodies composed of materials that exhibit both
thermal, electrical, and mechanical aspects. This intersection of diverse material be-
haviors and physical forces presents both scientific challenges and promising opportu-
nities for technological advancements. In this context, we delve into the complexities
of contact problems for thermopiezoelectric materials, aiming to gain a deeper under-
standing of their behavior and harness their capabilities for innovative applications in
various domains, including sensors, actuators, and energy harvesting systems. General
characteristics of thermo-piezoelectricity can be found in [15, 18, 21].

In the literature, there are some mathematical results concerning the variational
analysis for this kind of problems; see, for instance, [1, 3, 4] for static models that
consider the effects of mechanical, electrical, and thermal interactions in frictional
contacts. The mathematical models that describe quasistatic frictional contact with
thermo-piezoelectric effects are already addressed in [5, 6, 7, 11, 12], and more recently
in [8]. Numerical schemes and their error estimates for the aforementioned models were
also discussed for both static and quasistatic cases in [1, 5, 6, 8].
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The behavior of such materials when subjected to dynamic conditions can exhibit
notable differences from their behavior under static and quasistatic conditions, and can
lead to complex and challenging problems in engineering applications. Then, there is
significant interest in extending the contact problem for thermo-piezoelectric materials
to dynamic cases.

In this paper, we deal with a general model for the dynamic process of frictionless
contact between a deformable body and an electrically and thermally conductive foun-
dation. The material obeys a thermo-electro-viscoelastic constitutive law. Moreover,
a normal compliance condition and a regularized electrical and thermal conditions are
used to describe the contact. We derive a variational formulation of the problem which
is in the form of a system coupling a nonlinear hyperbolic variational equation for the
displacement field, a nonlinear parabolic variational equation for the temperature field,
and a nonlinear variational equation for the electric potential field. After this, we es-
tablish the existence of a unique weak solution to the problem. Finally, we introduce
the numerical analysis of the problem and derive error estimates for numerical approx-
imations. Let us remark that, up to date, there is no work dealing with the numerical
analysis of the dynamic contact problem arising in thermo-electro-viscoelasticity, and
that represents the main novelty of this work.

The paper is organized as follows. In Section 2, we state the mechanical problem.
In Section 3, we list the assumptions on the data and derive a variational formulation
of the model. In Section 4, we state and prove an existence and uniqueness result based
on the Banach fixed point theorem. Lastly, in Section 5, we analyze a fully discrete
scheme for the problem. We use the finite element method to discretize the domain and
a forward Euler scheme to discretize the time derivative. Additionally, error estimates
related to the scheme are derived.

2 Setting of the problem
In this section, we give a classic formulation of the problem of a thermo-piezoelectric
body in a dynamic process contact with a rigid conductive foundation and which moves
in such a way that frictional heating occurs.

Let us consider a thermo-piezoelectric body which initially occupies a bounded
domain Ω ⊂ Rd (d = 2, 3) with a smooth boundary Γ = ∂Ω. Let [0, T ] be time interval
of interest, where T > 0.

For the sake of simplifying notation, we denote by x ∈ Ω∪Γ and t ∈ [0, T ] the spatial
and the time variable, respectively. We will not explicitly denote the dependence of
various functions on x. Throughout this paper the indices i, j, k, l run from 1 to d. The
summation convention over repeated indices is used. The comma following an index
denotes a partial derivative with respect to the corresponding component of the spatial
variable, and a dot above a variable represents the time derivative.

Additionally, we use Div and div to represent the divergence operators for tensor
and vector fields, respectively, that is

Divσ = (σij,j), and divD = Di,i.

We denote the space of second order symmetric tensors on Rd by Sd. In addition,
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the symbols ” · ” and |·| are used to represent the canonical inner product and its
associated norm on Rd and Sd that is

u · v = uivi, |v| =
√
v · v, ∀u, v ∈ Rd,

σ · τ = σijτij, |τ | =
√
τ · τ , ∀σ, τ ∈ Sd.

We denote by ν the unit outward normal on boundary Γ and we shall adopt the
usual notation for normal and tangential components of vectors and tensors

u = uνν + uτ , uν = u · ν and σ = σνν + στ , σν = (σν) · ν.

In the end to present our problem, we denote by u : Ω × (0, T ) → Rd the dis-
placement field, θ : Ω × (0, T ) → R the temperature field, ϕ : Ω × (0, T ) → R the
electric potential, σ : Ω × (0, T ) → Sd the stress tensor, D : Ω × (0, T ) → Rd the
electric displacement field and q : Ω× (0, T )→ Rd the heat flux vector. Moreover, let
ε(u) = (εij(u)) denote the linearized strain tensor given by

εij(u) =
1

2
(ui,j + uj,i).

We assume that the body is acted upon by a volume forces of density f0, a volume
electric charges of density q0 and a heat source of constant strength qc. As the process
is assumed to be dynamic, we have the following equations of stress equilibrium, quasi-
stationary electric field and heat conduction

ρü−Divσ = f0 in Ω× (0, T ), (1)

divD = q0 in Ω× (0, T ), (2)

θ̇ + divq = R(u̇, ϕ) + qc in Ω× (0, T ). (3)

Here a non negative function ρ represents the mass density and the nonlinear func-
tion R describe the influence of the velocity field and the electric potential on the
temperature. In [16] the following function was used

R(u̇, ϕ) = µ |∇ϕ|2 −Mijθref
∂u̇i
∂xj

,

where µ and M are the electrical conductivity coefficient and the thermal expansion
tensor, respectively. θ is measured with respect to a reference absolute temperature
θref .

We assume that the material is thermo-piezoelectric and obeys the following con-
stitutive laws

σ = Aε(u̇) + Fε(u)− E∗E(ϕ)− θM in Ω× (0, T ), (4)

D = Eε(u) + BE(ϕ)− θP in Ω× (0, T ), (5)

where A = (Aijkl), F = (Fijkl), E = (Eijk), B = (Bij) and P = (Pi) are respectively the
viscosity tensor, the elasticity tensor, the piezoelectric tensor, the electric permittivity
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tensor and the pyroelectric tensor. Indeed, E(ϕ) = −∇ϕ is the electric intensity vector.
Notice also that E∗ is the transpose of the tensor E given by

E∗ = (E∗ijk), where E∗ijk = Ekij.

We express the heat flux using the Fourier law of heat conduction given by

q = −K∇θ in Ω× (0, T ). (6)

where K = (Kij) is the thermal conductivity tensor.
In the end to prescribe the mechanical and temperature boundary conditions, we

divide Γ into tree measurable disjoint parts ΓD, ΓN and ΓC such that meas(ΓD) > 0.
We assume that the body is fixed on ΓD and a surfaces traction of density fN act on
ΓN , that is

u = 0 on ΓD × (0, T ), (7)

σν = fN on ΓN × (0, T ). (8)

We also assume that the temperature vanishes on ΓD ∪ ΓN , that is

θ = 0 on (ΓD ∪ ΓN)× (0, T ). (9)

On the other hand, for formulate the electrical boundary conditions we consider a
partition of ΓD∪ΓN in to two measurable disjoint parts Γa and Γb such thatmeas(Γa) >
0. We assume that the electrical potential vanishes on Γa and a surface electric charge
of density qb is prescribed on Γb, that is

ϕ = 0 on Γa × (0, T ), (10)

D · ν = qb on Γb × (0, T ). (11)

In the reference configuration, the body is in contact with a thermally and elec-
trically conductive foundation along ΓC , then the thermoelectric contact is described
with the following regularized conditions(see [4, 17])

D · ν = ψe(uν − g)φL(ϕ− ϕF ) on ΓC × (0, T ), (12)

q · ν = ψc(uν − g)φL(θ − θF ) on ΓC × (0, T ). (13)

Here, g denotes the gap function that characterizes the separation between the body
and the foundation at the contact surface. θF and ϕF are respectively the temperature
and the potential of the foundation. ψc and ψe are the thermal conductance and
the surface electrical conductivity functions, respectively. φL is the truncate function
defined by

φL(s) =


−L if s < −L,
s if |s| ≤ L,
L if s > L.

Where L is a large positive number.
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We assume that the contact between the body and the foundation is frictionless,
i.e. the tangential component of stress is zero on the contact surface.

στ = 0 on ΓC × (0, T ). (14)

We employ the following normal compliance contact condition

− σν = p(uν − g) on ΓC × (0, T ). (15)

Where p is a prescribed non negative function which vanishes when its argument
is negative, i.e. p(r) = 0 for r ≤ 0. General forms of the normal compliance contact
condition can be found in [14, 19] and in the references therein. For instance, one
possible formulation is

p(r) =
1

ε
r+,

where ε is a positive constant and r+ = max{0; r}.

Finally, we prescribe the following initials conditions

u(0) = u0, u̇(0) = v0, θ(0) = θ0 in Ω. (16)

where u0, v0 and θ0 are given functions.
Thus, given the aforementioned assumptions, the dynamic frictionless contact prob-

lem for thermo-piezoelectric materials can be formulated in the following classical man-
ner.

Problem (P). Find a displacement field u : Ω× (0, T )→ Rd, an electric potential
ϕ : Ω× (0, T )→ R and a temperature field θ : Ω× (0, T )→ R such that: (1)-(16).

3 Variational Formulation
In this section, we derive a weak formulation of Problem (P). To this end we need
to introduce some notations and preliminaries.

We use standard notation for the Lebesgue and the Sobolev spaces associated with
Ω and Γ. We use the notations H, H1 and H for the following spaces

H = [L2(Ω)]d = {v = (vi)|vi ∈ L2(Ω)}, H1 = [H1(Ω)]d,

H = {σ ∈ Sd|σ = (σij);σij = σji ∈ L2(Ω)}.

The spaces H, H1 and H are real Hilbert spaces endowed with the inner products
given by

(u, v)H =

∫
Ω

uividx, ∀u, v ∈ H,

(σ, τ)H =

∫
Ω

σijτijdx, ∀σ, τ ∈ H,

(u, v)H1 = (u, v)H + (ε(u), ε(v))H, ∀u, v ∈ H1.
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The associated norms in H, H and H1 are denoted by |.|H , ‖.‖H and ‖.‖H1 , respec-
tively.

Under the space H we define also a modified inner product given by

((u, v))H =

∫
Ω

ρuividx, ∀u, v ∈ H,

and the associated norm is denoted by ‖.‖H .
Keeping in mind (7), we introduce the closed subspace of H1

V = {w ∈ H1 | w = 0 on ΓD}.

Since meas(ΓD) > 0, the following Korn’s inequality holds: There exists ck > 0
depending only on Ω and ΓD such that

‖ε(v)‖H ≥ ck ‖v‖H1 , ∀v ∈ V. (17)

We define over the space V the inner product

(u, v)V = (ε(u), ε(v))H, ∀u, v ∈ V.

and its associated norm ‖v‖V = ‖ε(v)‖H is equivalent on V to the usual norm ‖.‖H1 ,
therefore (V, ‖.‖V ) is a real Hilbert space.

For simplicity, for an element ω ∈ H1, we still denote by ω its trace γ(ω) on Γ. By
trace theorem, there exists a constant c0 > 0 such that

‖w‖[L2(ΓC)]d ≤ c0 ‖w‖V , ∀w ∈ V. (18)

Next, for the temperature field and the electric potential we introduce the closed
functions subspaces of H1(Ω)

Q = {η ∈ H1(Ω) | η = 0 on ΓD ∪ ΓN},
W = {ξ ∈ H1(Ω) | ξ = 0 on Γa}.

Over Q and W , we consider the following inner products

(θ, η)Q = (∇θ,∇η)H , (ϕ, ξ)W = (∇ϕ,∇ξ)H , (19)

for all θ, η ∈ Q and ϕ, ξ ∈ W , and the associated norms

‖η‖Q = |∇η|H , ‖ξ‖W = |∇ξ|H . (20)

Sincemeas(ΓD) > 0 andmeas(Γa) > 0, Friedrichs-Poincaré inequality holds, there-
fore, there exists a constants cp1 > 0 and cp2 > 0 such that

|∇ξ|H ≥ cp1 ‖ξ‖H1(Ω) , ∀ξ ∈ W. (21)

|∇η|H ≥ cp1 ‖η‖H1(Ω) , ∀η ∈ Q, (22)
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It follows from (19)-(22) that ‖.‖W and ‖.‖Q are equivalents on W and Q, respec-
tively with ‖.‖H1(Ω) and then (W, ‖.‖W ) and (Q, ‖.‖Q) are real Hilbert spaces. Moreover,
by trace theorem, there exists a constants c1 > 0 and c2 > 0 such that

‖ξ‖L2(ΓC) ≤ c1 ‖ξ‖W , ∀ξ ∈ W, (23)

‖η‖L2(ΓC) ≤ c2 ‖η‖Q , ∀η ∈ Q. (24)

Finally, for a real Banach space (Z, ‖.‖Z), we denote by Z ′ the dual space of Z and
we use the notation (·, ·)Z′×Z to represent the duality pairing between Z ′ and Z. For
1 ≤ p ≤ ∞ and m = 1, 2, ... we use the usual notation for the spaces Lp(0, T ;Z) and
Wm,p(0, T ;Z). We denote by C(0, T ;Z) and C1(0, T ;Z) the space of continuous an
continuously differentiable functions from [0, T ] to Z respectively.

For the study of the mechanical Problem (P) we list these assumptions on its
data.

(H1) The viscosity and the elasticity tensors A,F : Ω× Sd → Sd, The electric permit-
tivity and the thermal conductivity tensors B,K : Ω× Rd → Rd satisfy

1. The usual property of symmetry and boundedness

Aijkl = Ajikl = Aklij = Aijlk ∈ L∞(Ω),

Fijkl = Fjikl = Fklij = Fijlk ∈ L∞(Ω),

Bij = Bji ∈ L∞(Ω), Kij = Kji ∈ L∞(Ω).

2. There exists mA > 0, mF > 0, mB > 0 and mK > 0 such that

Aijklσijσkl ≥ mA |σ|2 , Fijklσijσkl ≥ mF |σ|2 ,

Bijζiζj ≥ mB |ζ|2 , Kijζiζj ≥ mK |ζ|2 .

for all σ ∈ Sd and ζ ∈ Rd.

3. There exists MA > 0, MF > 0, MB > 0 and MK > 0 such that

MA = sup
ijkl
‖Aijkl‖L∞(Ω) , MF = sup

ijkl
‖Fijkl‖L∞(Ω) ,

MB = sup
ij
‖Bij‖L∞(Ω) , MK = sup

ij
‖Kij‖L∞(Ω) .

(H2) The thermal expansion tensor M : Ω × R → Sd, the pyroelectric tensor P :
Ω× R→ Rd and the piezoelectric tensor E : Ω× Sd → Rd satisfy

1. The usual property of symmetry and boundedness

Mij =Mji ∈ L∞(Ω), Pi ∈ L∞(Ω), Eijk = Eikj ∈ L∞(Ω).
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2. There exists MM > 0, MP > 0 and ME > 0 such that

MM = sup
ij
‖Mij‖L∞(Ω) , MP = sup

i
‖Pi‖L∞(Ω) , ME = sup

ijk
‖Eijk‖L∞(Ω) .

(H3) The function R : V ×W → L2(Ω) satisfies that there exists MR > 0 such that

‖R(ζ1, ξ1)−R(ζ2, ξ2)‖L2(Ω) ≤MR (‖ζ1 − ζ2‖V + ‖ξ1 − ξ2‖W ) ,

for all ζ1, ζ2 ∈ V and ξ1, ξ2 ∈ W .

(H4) The normal compliance function p : ΓC × R→ R+ satisfies

1. There exists Lp > 0 such that

|p(x, ς1)− p(x, ς2)| ≤ Lp |ς1 − ς2| , ∀ς1, ς2 ∈ R, a.e. x ∈ ΓC .

2. x 7→ p(x, ς) is measurable on ΓC for all ς ∈ R.

(H5) The thermal conductance function ψc : ΓC × R → R+ and the surface electrical
conductivity function ψe : ΓC × R→ R+ satisfy

1. For ψ = ψc, ψe,
ψ(x, ς) = 0, ∀ς ≤ 0, a.e.x ∈ ΓC .

2. For ψ = ψc, ψe, there exists Lψ > 0 such that

|ψ(x, ς1)− ψ(x, ς2)| ≤ Lψ |ς1 − ς2| , ∀ς1, ς2 ∈ Randx ∈ ΓC .

3. For ψ = ψc, ψe, the function x 7→ ψ(x, ς) is measurable on ΓC for all ς ∈ R.

(H6) The forces, the traction, the volume, the surfaces charge densities and the strength
of the heat source satisfy

f0 ∈ L2(0, T ;H), fN ∈ L2(0, T ; [L2(ΓN)]d),

q0 ∈ L2(0, T ;L2(Ω)), qb ∈ L2(0, T ;L2(Γb)),

qc ∈ L2(0, T ;L2(Ω)).

(H7) The initial conditions, the gap, the potential and the temperature of the founda-
tion and the mass density functions satisfy

u0 ∈ V, v0 ∈ H, θ0 ∈ L2(Ω), g ∈ L2(ΓC),

ϕF ∈ L2(ΓC), θF ∈ L2(ΓC), ρ ∈ L∞(Ω).
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Next, we define the elements f(t) ∈ V ′, qe(t) ∈ W ′ and qth(t) ∈ Q′ by

(f(t), v)V ′×V =

∫
Ω

f0(t) · vdx+

∫
ΓN

fN(t) · vda, (25)

(qe(t), ξ)W ′×W =

∫
Ω

q0(t)ξdx−
∫

Γb

qb(t)ξda, (26)

(qth(t), η)Q′×Q =

∫
Ω

qc(t)ηdx, (27)

for all w ∈ V , ξ ∈ W , η ∈ Q and t ∈ [0, T ].

We define the mappings jd : V ×V → R, je : V ×W×W → R and jth : V ×Q×Q→
R by

jd(u,w) =

∫
ΓC

p(uν − g)wνda, (28)

je(u, ϕ, ξ) =

∫
ΓC

ψe(uν − g)φL(ϕ− ϕF )ξda, (29)

jth(u, θ, η) =

∫
ΓC

ψc(uν − g)φL(θ − θF )ηda. (30)

Finally, we apply the Banach fixed point theorem to deduce that there exists a
unique element ϕ0 ∈ W such that for all ξ ∈ W

(B∇ϕ0,∇ξ)H + (θ0P ,∇ξ)H − (Eε(u0),∇ξ)H + je(u0, ϕ0, ξ) = (qe(0), ξ)W . (31)

The equation (31) ensure the compatibility between the initial conditions.
Now, by utilizing Green’s formula, we obtain the following variational formula-

tion of Problem (P) expressed in terms of displacement field, electric potential and
temperature field.

Problem (PV). Find a displacement field u : (0, T ) → V , an electric potential
ϕ : (0, T )→ W and a temperature field θ : (0, T )→ Q a.e. t ∈ [0, T ] such that for all
w ∈ V , ξ ∈ W and η ∈ Q

((ü(t), w))H + (Aε(u̇(t)), ε(w))H + (Fε(u(t)), ε(w))H + (E∗∇ϕ(t), ε(w))H

− (θ(t)M, ε(w))H + jd(u(t), w) = (f(t), w)V ′×V ,
(32)

(B∇ϕ(t),∇ξ)H + (θ(t)P ,∇ξ)H − (Eε(u(t)),∇ξ)H + je(u(t), ϕ(t), ξ)

= (qe(t), ξ)W ′×W ,
(33)

(θ̇(t), η)L2(Ω) + (K∇θ(t),∇η)H − (R(u̇(t), ϕ(t)), η)L2(Ω) + jth(u(t), θ(t), η)

= (qth(t), η)Q′×Q,
(34)

u(0) = u0, u̇(0) = v0, θ(0) = θ0. (35)
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4 Existence and uniqueness result
Our main existence and uniqueness result of the solution of Problem (PV) is the
following.

Theorem 4.1. Assume that (H1)-(H7) hold, then there exists a unique solution
(u, ϕ, θ) of Problem (PV), Moreover the solution satisfies

u ∈ W 1,2(0, T ;V ) ∩ C1(0, T ;H), ü ∈ L2(0, T ;V ′), (36)

ϕ ∈ L2(0, T ;W ), (37)

θ ∈ L2(0, T ;L2(Ω)). (38)

The proof of Theorem (4.1) will be carried out in several steps, and it is based on
results of evolutionary variational equalities and Banach fixed point theorem.

Let ζ ∈ L2(0, T ;V ′). In the first step, we consider the following intermediate
problem of displacement field

Problem (PV dp
ζ ). Find uζ(t) ∈ V for a.e. t ∈ (0, T ) such that

((üζ(t), w))H + (Aε(u̇ζ(t)), ε(w))H + (ζ(t), w)V ′×V = (f(t), w)V ′×V , ∀w ∈ V, (39)

uζ(0) = u0 u̇ζ(0) = v0. (40)

Lemma 1. For all w ∈ V and for a.e. t ∈ [0, T ], the Problem (PV dp
ζ ) has a unique

solution uζ ∈ W 1,2(0, T ;V ) ∩ C1(0, T ;H) and üζ ∈ L2(0, T ;V ′). Moreover, if uζ1 and
uζ2 are the solutions of (PV dp

ζ1
) and (PV dp

ζ2
), respectively, then there exists a constant

C > 0, such that

‖uζ1(t)− uζ2(t)‖
2
V ≤ C

∫ t

0

‖ζ1(s)− ζ2(s)‖2
V ′ ds, ∀t ∈ [0, T ]. (41)

Proof. By using the Riesz’s representation theorem we define the element fζ(t) ∈ V ′
such that for all t ∈ [0, T ]

(fζ(t), w)V ′×V = (f(t)− ζ(t), w)V ′×V .

and the operator A : V → V ′ defined by

(Au,w)V ′×V = (Aε(u), ε(w))H.

Recalling the Gelfand triple V ⊂ H ⊂ V ′, let us denote

(u, v)V ′×V = ((u, v))H , for all u ∈ H, v ∈ V.

Then the equation (39) can be rewritten as follows

üζ(t) + Au̇ζ(t) = fζ(t), ∀t ∈ [0, T ]. (42)

It is easy to see that, the operator A is bounded, hemicontinuous, monotone and
coercive. We recall that fζ ∈ L2(0, T ;V ′) and v0 ∈ H, then by using a standard
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result on evolution equations with monotone operators (see [20, p.48]) we can prove
the existence and uniqueness of vζ such that

vζ ∈ L2(0, T ;V ) ∩ C(0, T ;H); v̇ζ ∈ L2(0, T ;V ′), (43)

v̇ζ(t) + Avζ(t) = fζ(t), a.e. t ∈ [0, T ], (44)

vζ(0) = v0. (45)

Let uζ : [0, T ]→ V the function defined by

uζ(t) = u0 +

∫ t

0

vζ(s)ds, ∀t ∈ [0, T ].

Then from (44) and (45), we conclude that uζ is a unique solution of the equation
(42) combining with the initial conditions (40).

Now, we turn to prove the inequality (41). Let ζ1, ζ2 be two elements of ∈
L2(0, T ;V ′) and let uζ1and uζ2 be the corresponding solutions of (PV dp

ζ1
) and (PV dp

ζ2
),

respectively. We write the variational equality (39) successively for uζ1 and uζ2 for
w = u̇ζ1(s)− u̇ζ2(s) , and subtract the resulting equalities we obtain that

((üζ1(s)− üζ2(s), u̇ζ1(s)− u̇ζ2(s)))H
+ (Aε(u̇ζ1(s)− u̇ζ2(s)), ε(u̇ζ1(s)− u̇ζ2(s)))H
+ (ζ1(s)− ζ2(s), u̇ζ1(s)− u̇ζ2(s))V ′×V = 0.

(46)

By using the coercivity of A and cauchy-schwartz inequality we find

1

2

d

ds
‖u̇ζ1(s)− u̇ζ2(s)‖

2
H +mA ‖u̇ζ1(s)− u̇ζ2(s)‖

2
V

≤ ‖ζ1(s)− ζ2(s)‖V ′ ‖u̇ζ1(s)− u̇ζ2(s)‖V .
(47)

Integrating this inequality over the interval time variable (0, t), and using the in-
equality

ab ≤ αa2 +
1

4α
b2, ∀a, b ∈ R, α > 0. (48)

We obtain that
1

2
‖u̇ζ1(t)− u̇ζ2(t)‖

2
H +mA

∫ t

0

‖u̇ζ1(s)− u̇ζ2(s)‖
2
V ds

≤ 1

2mA

∫ t

0

‖ζ1(s)− ζ2(s)‖2
V ′ ds+

mA
2

∫ t

0

‖u̇ζ1(s)− u̇ζ2(s)‖
2
V ds.

(49)

Then ∫ t

0

‖u̇ζ1(s)− u̇ζ2(s)‖
2
V ds ≤

1

m2
A

∫ t

0

‖ζ1(s)− ζ2(s)‖2
V ′ ds. (50)

Remembering that for all t ∈ [0, T ], we have

‖uζ1(t)− uζ2(t)‖
2
V ≤ T

∫ t

0

‖u̇ζ1(s)− u̇ζ2(s)‖
2
V ds, ∀t ∈ [0, T ]. (51)

Finally, we combine (50) with (51) to deduce (41).
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In the second step, let χ ∈ L2(0, T ;W ), we utilize the displacement field uζ obtained
in Lemma 1 in the construction of the following problem in term of temperature field.

Problem (PV th
ζ,χ).

Find a temperature field θζ,χ : (0, T )→ Q such that

(θ̇ζ,χ(t), η)L2(Ω) + (K∇θζ,χ(t),∇η)H − (R(u̇ζ(t), χ(t)), η)L2(Ω)

+ jth(uζ(t), θζ,χ(t), η) = (qth(t), η)Q′×Q, ∀η ∈ Q,
(52)

θζ,χ(0) = θ0. (53)

Lemma 2. For all η ∈ Q and a.e. t ∈ [0, T ], the Problem (PV th
ζ,χ) has a unique

solution θζ,χ ∈ L2(0, T ;L2(Ω)). Moreover, if θζ1,χ1 and θζ2,χ2 are solutions of (PV th
ζ1,χ1

)

and (PV th
ζ2,χ2

), respectively, then there exists C > 0 such that for all t ∈ [0, T ],

‖θζ1,χ1(t)− θζ2,χ2(t)‖
2
L2(Ω) ≤ C

∫ t

0

‖(ζ1, χ1)(s)− (ζ2, χ2)(s)‖2
V ′×W ds. (54)

Proof. The existence and uniqueness result was established by Essoufi et al. in [12] by
using the Faedo-Galerkin method.

On the other hand, for (ζ1, χ1), (ζ2, χ2) ∈ L2(0, T ;V ′ ×W ) we denote by θζ1,χ1 and
θζ2,χ2 the corresponding solutions of (PV th

ζ1,χ1
) and (PV th

ζ2,χ2
), respectively. We write

(52) for (ζ1, χ1) and (ζ2, χ2), respectively, with taking η = θζ1,χ1(s) − θζ2,χ2(s), and
subtracting the resulting equalities we obtain that

(θ̇ζ1,χ1(s)− θ̇ζ2,χ2(s), θζ1,χ1(s)− θζ2,χ2(s))L2(Ω)

+(K∇(θζ1,χ1(s)− θζ2,χ2(s)),∇(θζ1,χ1(s)− θζ2,χ2(s)))H

= (R(u̇ζ1(s), χ1(s))−R(u̇ζ2(s), χ2(s)), θζ1,χ1(s)− θζ2,χ2(s))L2(Ω)

+jth(uζ2(s), θζ2,χ2(s), θζ1,χ1(s)− θζ2,χ2(s))

−jth(uζ1(s), θζ1,χ1(s), θζ1,χ1(s)− θζ2,χ2(s)).

(55)

Notice that

|jth(uζ2(s), θζ2,χ2(s), θζ1,χ1(s)− θζ2,χ2(s))

−jth(uζ1(s), θζ1,χ1(s), θζ1,χ1(s)− θζ2,χ2(s))|
≤ LLψcc0c2 ‖uζ1(s)− uζ2(s)‖V ‖θζ1,χ1(s)− θζ2,χ2(s)‖Q .

(56)

Then, using the coercivity ofK, the continuity ofR, the Cauchy-Schwartz inequality
and the previous inequality, we deduce from (55) that there exists a constant C > 0
such that

1

2

d

ds
‖θζ1,χ1(s)− θζ2,χ2(s)‖

2
L2(Ω) +mK ‖θζ1,χ1(s)− θζ2,χ2(s)‖

2
Q

≤ C
(
‖u̇ζ1(s)− u̇ζ2(s)‖V ‖θζ1,χ1(s)− θζ2,χ2(s)‖L2(Ω)

+ ‖χ1(s)− χ2(s)‖W ‖θζ1,χ1(s)− θζ2,χ2(s)‖L2(Ω)

+ ‖uζ1(s)− uζ2(s)‖V ‖θζ1,χ1(s)− θζ2,χ2(s)‖Q
)
.

(57)
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Integrating this inequality over (0, t) and by using the inequality (48) several times,
we obtain that there exists C > 0 such that

‖θζ1,χ1(t)− θζ2,χ2(t)‖
2
L2(Ω) ≤ C

(∫ t

0

‖θζ1,χ1(s)− θζ2,χ2(s)‖
2
L2(Ω) ds

+

∫ t

0

‖uζ1(s)− uζ2(s)‖
2
V ds+

∫ t

0

‖u̇ζ1(s)− u̇ζ2(s)‖
2
V ds

+

∫ t

0

‖χ1(s)− χ2(s)‖2
W ds

)
.

(58)

By Gronwall inequality, we find that there exists C > 0 such that

‖θζ1,χ1(t)− θζ2,χ2(t)‖
2
L2(Ω) ≤ C

(∫ t

0

‖uζ1(s)− uζ2(s)‖
2
V ds

+

∫ t

0

‖u̇ζ1(s)− u̇ζ2(s)‖
2
V ds+

∫ t

0

‖χ1(s)− χ2(s)‖2
W ds

)
.

(59)

Keeping in mind the inequalities (41) and (50), the inequality (54) holds.

In the third step, we use the displacement field uζ obtained in Lemma 1 and the
temperature field θζ,χ obtained in Lemma 2 in the construction of the following prob-
lem in term of electric potential.

Problem(PV el
ζ,χ).

Find an electric potential ϕζ,χ : (0, T )→ W such that

(B∇ϕζ,χ(t),∇ξ)H + (θζ,χ(t)P ,∇ξ)H − (Eε(uζ(t)),∇ξ)H
+ je(uζ(t), ϕζ,χ(t), ξ) = (qe(t), ξ)W ′×W , ∀ξ ∈ W.

(60)

Lemma 3. For all ξ ∈ W and a.e. t ∈ [0, T ], the Problem (PV el
ζ,χ) has a unique

solution ϕζ,χ ∈ L2(0, T ;W ). Moreover, if ϕζ1,χ1 and ϕζ2,χ2 are solutions of (PV el
ζ1,χ1

)

and (PV el
ζ2,χ2

), respectively, then there exists C > 0, such that for all t ∈ [0, T ]

‖ϕζ1,χ1(t)− ϕζ2,χ2(t)‖
2
W ≤ C

∫ t

0

‖(ζ1, χ1)(s)− (ζ2, χ2)(s)‖2
V ′×W ds. (61)

Proof. The existence and uniqueness result was established by Essoufi et al. in [12]. For
(ζ1, χ1), (ζ2, χ2) ∈ L2(0, T ;V ′×W ), let ϕζ1,χ1 and ϕζ2,χ2 be the corresponding solutions
of (PV el

ζ1,χ1
) and (PV el

ζ2,χ2
) , respectively.

By taking the substitution (ζ, χ) = (ζi, χi) in (60) and choosing ξ = ϕζ1,χ1 − ϕζ2,χ2

for i = 1, 2, we find that

(B∇(ϕζ1,χ1(t)− ϕζ2,χ2(t)),∇(ϕζ1,χ1(t)− ϕζ2,χ2(t)))H

+ ((θζ1,χ1(t)− θζ2,χ2(t))P ,∇(ϕζ1,χ1(t)− ϕζ2,χ2(t)))H

= (Eε(uζ1(t)− uζ2(t)),∇(ϕζ1,χ1(t)− ϕζ2,χ2(t)))H

+ je(uζ2(t), ϕζ2,χ2(t), ϕζ1,χ1(t)− ϕζ2,χ2(t))

− je(uζ1(t), ϕζ1,χ1(t), ϕζ1,χ1(t)− ϕζ2,χ2(t)).

(62)
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It is easy to see that

|je(uζ2(t), ϕζ2,χ2(t), ϕζ1,χ1(t)− ϕζ2,χ2(t))

−je(uζ1(t), ϕζ1,χ1(t), ϕζ1,χ1(t)− ϕζ2,χ2(t))|
≤ LLψec0c1 ‖uζ1(t)− uζ2(t)‖V ‖ϕζ1,χ1(t)− ϕζ2,χ2(t)‖W .

(63)

Then, from the previous inequality, the coercivity of B and the continuity of P and
E we deduce from (62) that

mB ‖ϕζ1,χ1(t)− ϕζ2,χ2(t)‖W ≤MP ‖θζ1,χ1(t)− θζ2,χ2(t)‖L2(Ω)

+(ME + LLψec0c1) ‖uζ1(t)− uζ2(t)‖V .
(64)

The inequality (a+ b)2 ≤ 2a2 + 2b2 leads to

‖ϕζ1,χ1(t)− ϕζ2,χ2(t)‖
2
W ≤ 2

M2
P

m2
B
‖θζ1,χ1(t)− θζ2,χ2(t)‖

2
L2(Ω)

+2
(ME + LLψec0c1)2

m2
B

‖uζ1(t)− uζ2(t)‖
2
V .

(65)

Keeping in mind inequalities (41) and (54) the inequality (61) holds.

In the last step of the proof, for (ζ, χ) ∈ L2(0, T ;V ′ ×W ) we denote by uζ , θζ,χ
and ϕζ,χ the solutions of problems (PV dp

ζ ), (PV th
ζ,χ) and (PV el

ζ,χ), respectively, and we
consider the operator Λ : L2(0, T ;V ′ ×W )→ L2(0, T ;V ′ ×W ) defined by

Λ(ζ, χ) = (Λ1(ζ, χ),Λ2(ζ, χ)), (66)

where
(Λ1(ζ, χ), w)V = (Fε(uζ(t)), ε(w))H + (E∗∇ϕζ,χ(t), ε(w))H

− (θζ,χ(t)M, ε(w))H + jd(uζ(t), w), (67)

Λ2(ζ, χ)(t) = ϕζ,χ(t), (68)

for all w ∈ V and a.e. t ∈ [0, T ].

We have the following result.

Lemma 4. There exists a unique (ζ∗, χ∗) ∈ L2(0, T ;V ′ ×W ) such that Λ(ζ∗, χ∗) =
(ζ∗, χ∗).

Proof. Let (ζ1, χ1), (ζ2, χ2) ∈ L2(0, T ;V ′ ×W ) and for i = 1, 2, let uζi , θζi,χi
and ϕζi,χi

the solutions of (PV dp
ζi

), (PV th
ζi,χi

) and (PV el
ζi,χi

) respectively.
By (67)-(68) and after some algebra, we obtain

‖Λ1(ζ1, χ1)(t)− Λ1(ζ2, χ2)(t)‖2
V ′ ≤ (2M2

F + 2c2
0L

2
P ) ‖uζ1(t)− uζ2(t)‖

2
V

+2M2
E ‖ϕζ1,χ1(t)− ϕζ2,χ2(t)‖

2
W + 2M2

M ‖θζ1,χ1 − θζ2,χ2(t)‖
2
L2(Ω) ,

(69)

‖Λ2(ζ1, χ1)(t)− Λ2(ζ2, χ2)(t)‖2
W ≤ ‖ϕζ1,χ1(t)− ϕζ2,χ2(t)‖

2
W . (70)
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Combining (69)-(70) with the estimates (41), (54) and (61), we conclude that there
exists a constant C > 0 such that

‖Λ(ζ1, χ1)(t)− Λ(ζ2, χ2)(t)‖2
V ′×W

≤ C

∫ t

0

‖(ζ1, χ1)(s)− (ζ2, χ2)(s)‖2
V ′×W ds.

(71)

Here and below, we denote by Λk the power of the operator Λ. Reiterating the
inequality (71) k times and after some algebra we get∥∥Λk(ζ1, χ1)(t)− Λk(ζ2, χ2)(t)

∥∥2

V ′×W

≤ Cktk−1

(k − 1)!

∫ t

0

‖(ζ1, χ1)(s)− (ζ2, χ2)(s)‖2
V ′×W ds,

(72)

for all t ∈ [0, T ], that leads to obtain the formula∥∥Λk(ζ1, χ1)− Λk(ζ2, χ2)
∥∥2

L2(0,T ;V ′×W )

≤ CkT k

k!

∫ T

0

‖(ζ1, χ1)(s)− (ζ2, χ2)(s)‖2
V ′×W ds.

(73)

Finally, we get ∥∥Λk(ζ1, χ1)− Λk(ζ2, χ2)
∥∥
L2(0,T ;V ′×W )

≤
√
CkT k

k!
‖(ζ1, χ1)− (ζ2, χ2)‖L2(0,T ;V ′×W ) .

(74)

This inequality shows that for a sufficiently large k the operator Λk is a contraction
on the Banach space L2(0, T ;V ′ ×W ), therefore, Banach fixed point theorem shows
that Λ admits a unique fixed point (ζ∗, χ∗) ∈ L2(0, T ;V ′ ×W ).

We are now ready to prove Theorem (4.1).

Proof of Theorem (4.1). Let (ζ∗, χ∗) ∈ L2(0, T ;V ′ ×W ) be the unique fixed point of
the operator Λ, we denote by uζ∗ , θζ∗,χ∗and ϕζ∗,χ∗ the solutions of problems (PV dp

ζ∗ ),
(PV th

ζ∗,χ∗) and (PV el
ζ∗,χ∗), respectively. Therefore, we conclude that (uζ∗ , ϕζ∗,χ∗ , θζ∗,χ∗) is

the solution of Problem (PV).
The uniqueness of the solution of Problem (PV) is a consequence of the uniqueness
of the fixed point of Λ.

5 Fully discrete approximation and error estimates
In this section, we introduce a fully discrete approximation for the Problem(PV) and
we establish an error bound for the resulting approximate solution.

Let T h = {Tr}r a finite element triangulation of Ω compatible with the boundary
partitions where h represents the spacial discretization parameter and let P1(Tr) the
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space of polynomials of global degree less or equal to 1 in Tr, We then define the
following finite-dimensional spaces

V h = {wh ∈ [C(Ω̄)]d, wh|Tr ∈ [P1(Tr)]
d, wh = 0 on ΓD} ⊂ V,

W h = {ξh ∈ C(Ω̄), ξh|Tr ∈ P1(Tr), ξ
h = 0 on Γa} ⊂ W,

Qh = {ηh ∈ C(Ω̄), ηh|Tr ∈ P1(Tr), η
h = 0 on ΓD ∪ ΓN} ⊂ Q,

approximating the spaces V , W and Q, respectively. For the time interval, we consider
a uniform partition t0 = 0 < t1 < ... < tN = T of [0, T ]. We denote by k the time step
size given by k = T

N
. Moreover, for a continuous function g we denote g(tn) = gn, and

for a sequence {yn}Nn=0 we denote δyn = yn−yn−1

k
.

Let uh0 , vh0 , θh0 and ϕh0 be the appropriate approximations of the initial conditions
u0, v0, θ0 and ϕ0, respectively.

To simplify again the notations we introduce the velocity field v such that

u(t) = u0 +

∫ t

0

v(s)ds, ∀t ∈ [0, T ]. (75)

The fully discrete approximation of the Problem (PV) can be expressed using the
backward Euler scheme as follows.
Problem (PV hk): Find a discrete displacement field uhk = {uhkn }Nn=0 ⊂ V h, a dis-
crete electric potential ϕhk = {ϕhkn }Nn=0 ⊂ W h and a discrete temperature field θhk =
{θhkn }Nn=0 ⊂ Qh such that fora all wh ∈ V h, ξh ∈ W h and ηh ∈ Qh

((δvhkn , w
h))H + (Aε(vhkn ), ε(wh))H + (Fε(uhkn−1), ε(wh))H + (E∗∇ϕhkn−1, ε(w

h))H

− (θhkn−1M, ε(wh))H + jd(u
hk
n−1, w

h) = (fn, w
h)V ′×V ,

(76)

(B∇ϕhkn ,∇ξh)H + (θhkn P ,∇ξh)H − (Eε(uhkn ),∇ξh)H + je(u
hk
n , ϕ

hk
n−1, ξ

h)

= (qen , ξ
h)W ′×W ,

(77)

(δθhkn , η
h)L2(Ω) + (K∇θhkn ,∇ηh)H − (R(vhkn , ϕ

hk
n−1), ηh)L2(Ω) + jth(u

hk
n , θ

hk
n−1, η

h)

= (qthn , η
h)Q′×Q,

(78)

uhk(0) = uh0 , vhk(0) = vh0 , θhk(0) = θh0 , ϕhk(0) = ϕh0 . (79)

Here the discrete displacement field and the velocity field vhk =
{
vhkn
}
are related

by

uhkn = δvhkn and uhkn = uh0 + k

n∑
i=0

vhki , n = 1, ..., N.

Using the same arguments presented in the previous section, it can be shown that
Problem (PV hk) has a unique solution (uhk, ϕhk, θhk) ⊂ V h×W h×Qh. Our goal here
is to estimate the following numerical errors

∥∥un − uhkn ∥∥V , ∥∥vn − vhkn ∥∥H , ∥∥ϕn − ϕhkn ∥∥W ,∥∥θn − θhkn ∥∥L2(Ω)
and

∥∥θn − θhkn ∥∥Q.
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Theorem 5.1. Let the assumptions of Theorem (4.1) hold and ϕ0 is the solution
of (31). Let (u, ϕ, θ) and (uhk, ϕhk, θhk) denote the solutions of problems (PV) and
(PV hk), respectively. Under the following regularity conditions

v ∈ C(0, T ;H2(Ω)d) ∩H1(0, T ;V ) ∩H2(0, T ;H), v|Γc ∈ C(0, T ;H2(ΓC)d), (80)

ϕ ∈ C(0, T ;H2(Ω)), (81)

θ ∈ C(0, T ;H2(Ω)) ∩H1(0, T ;Q) ∩H2(0, T ;L2(Ω)), θ̇ ∈ L2(0, T ;H1(Ω)). (82)

There exists c > 0 independent of h and k such that

max
1≤n≤N

{∥∥un − uhkn ∥∥V +
∥∥vn − vhkn ∥∥H +

∥∥ϕn − ϕhkn ∥∥W
+
∥∥θn − θhkn ∥∥L2(Ω)

+ k
∥∥θn − θhkn ∥∥Q} ≤ c(h+ k).

(83)

Proof. everywhere below, we denote by c various positive constants which are depends
on the problem data, but they are independent of the discretization parameters h and
k and their value may vary from line to line.

Let us first obtain an error estimate on the velocity field. We take (32) at time
t = tn for w = wh ∈ V h and subtracting it from (76) to obtain that for all wh ∈ V h,
we have

((v̇n − δvhkn , wh))H + (Aε(vn − vhkn ), ε(wh))H + (Fε(un − uhkn−1), ε(wh))H

+ (E∗∇(ϕn − ϕhkn−1), ε(wh))H − ((θn − θhkn−1)M, ε(wh))H

+ jd(un, w
h)− jd(uhkn−1, w

h) = 0.

(84)

We write the previous relation for wh − vhkn to obtain that for all wh ∈ V h

((δ(vn − vhkn ), vn − vhkn ))H + (Aε(vn − vhkn ), ε(vn − vhkn ))H

= ((δ(vn − vhkn ), vn − wh))H + ((δvn − v̇n, wh − vhkn ))H

+ (Aε(vn − vhkn ), ε(vn − wh))H + (Fε(un − uhkn−1), ε(vhkn − wh))H
+ (E∗∇(ϕn − ϕhkn−1), ε(vhkn − wh))H + ((θn − θhkn−1)M, ε(wh − vhkn ))H

+ jd(u
hk
n−1, w

h − vhkn )− jd(un, wh − vhkn ).

(85)

From properties of the function p, we can easily see that∣∣jd(uhkn−1, w
h − vhkn )− jd(un, wh − vhkn )

∣∣ ≤ Lpc
2
0

∥∥un − uhkn−1

∥∥
V

∥∥wh − vhkn ∥∥V . (86)

Keeping in mind that

((δ(vn − vhkn ), vn − vhkn ))H ≥
1

2k

(∥∥vn − vhkn ∥∥2

H
−
∥∥vn−1 − vhkn−1

∥∥2

H

)
, (87)

the coercivity of A, the continuity of A, F , E and M , Cauchy-Schwartz inequality
and the inequality (48) we can deduce from (85) that there exists a constant c > 0
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such that∥∥vn − vhkn ∥∥2

H
−
∥∥vn−1 − vhkn−1

∥∥2

H
+ k

∥∥vn − vhkn ∥∥2

V
≤ ck

{
‖v̇n − δvn‖2

H

+
∥∥vn − wh∥∥2

H
+
∥∥vn − wh∥∥2

V
+
∥∥un−1 − uhkn−1

∥∥2

V
+
∥∥θn−1 − θhkn−1

∥∥2

L2(Ω)

+
∥∥ϕn−1 − ϕhkn−1

∥∥2

W
+ ‖un − un−1‖2

V + ‖θn − θn−1‖2
L2(Ω) + ‖ϕn − ϕn−1‖2

W

}
+ 2k((δ(vn − vhkn ), vn − wh))H .

(88)

Secondly, we proceed to estimate the numerical error on the temperature field, we
take (34) at time t = tn for η = ηh ∈ Qh and we subtract it to (78) to obtain that for
all ηh ∈ Qh we have

(θ̇n − δθhkn , ηh)L2(Ω) + (K∇(θn − θhkn ),∇ηh)H∗

= (R(vn, ϕn)−R(vhkn , ϕ
hk
n−1), ηh)L2(Ω)

+ jth(u
hk
n , θ

hk
n−1, η

h)− jth(un, θn, ηh).

(89)

Thus, we substitute ηh by ηh − θhkn to get

(δ(θn − θhkn ), θn − θhkn )L2(Ω) + (K∇(θn − θhkn ),∇(θn − θhkn ))H

= (δθn − θ̇n, ηh − θhkn )L2(Ω) + (δ(θn − θhkn ), θn − ηh)L2(Ω)

+ (K∇(θn − θhkn ),∇(θn − ηh))H + (R(vn, ϕn)−R(vhkn , ϕ
hk
n−1), ηh − θhkn )L2(Ω)

+ jth(u
hk
n , θ

hk
n−1, η

h − θhkn )− jth(un, θn, ηh − θhkn ).

(90)

From the properties of the functions ψc and φL, there exists C1 > 0 such that∣∣jth(uhkn , θhkn−1, η
h − θhkn )− jth(un, θn, ηh − θhkn )

∣∣
≤ LLψcc0c2

∥∥un − uhkn ∥∥Q ∥∥ηh − θhkn ∥∥Q . (91)

Using an analogue idea to (87), we have

(δ(θn − θhkn ), θn − θhkn )L2(Ω)

≥ 1

2k

(∥∥θn − θhkn ∥∥2

L2(Ω)
−
∥∥θn−1 − θhkn−1

∥∥2

L2(Ω)

)
.

(92)

By using the coercivity of K, the continuity of K and R, the Cauchy-Shwartz
inequality and Keeping in mind (91) and (92), we can deduce from (90) that for all
ηh ∈ Qh we have∥∥θn − θhkn ∥∥2

L2(Ω)
−
∥∥θn−1 − θhkn−1

∥∥2

L2(Ω)
+ k

∥∥θn − θhkn ∥∥2

Q

≤ ck

{∥∥∥θ̇n − δθn∥∥∥2

L2(Ω)
+
∥∥θn − ηh∥∥2

Q
+
∥∥vn − vhkn ∥∥2

V
+
∥∥ϕn−1 − ϕhkn−1

∥∥2

W

+ ‖ϕn − ϕn−1‖2
W +

∥∥un − uhkn ∥∥2

V

}
+ 2k(δ(θn − θhkn ), θn − ηh)L2(Ω).

(93)
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Thirdly, we turn to an estimation of the error estimate on the electric potential.
We take (33) at time t = tn for ξ = ξh ∈ W h and we subtract it from (77) to obtain
that for all ξh ∈ W h we have

(B∇(ϕn − ϕhkn ),∇ξh)H + ((θn − θhkn )P ,∇ξh)H − (Eε(un − uhkn ),∇ξh)H
+ je(un, ϕn, ξ

h)− je(uhkn , ϕhkn−1, ξ
h) = 0.

(94)

Thus, if we substitute ξh by ξh − ϕhkn in the previous equality, we get

(B∇(ϕn − ϕhkn ),∇(ϕn − ϕhkn ))H = (B∇(ϕn − ϕhkn ),∇(ϕn − ξh))H
− ((θn − θhkn )P ,∇(ξh − ϕhkn ))H + (E∗ε(un − uhkn ),∇(ξh − ϕhkn ))H

+ je(u
hk
n , ϕ

hk
n−1, ξ

h − ϕhkn )− je(un, ϕn, ξh − ϕhkn ).

(95)

We also have that∣∣je(uhkn , ϕhkn−1, ξ
h − ϕhkn )− je(un, ϕn, ξh − ϕhkn )

∣∣
≤ LLψec0c1

∥∥un − uhkn ∥∥V ∥∥ξh − ϕhkn ∥∥W .
(96)

Keeping in mind (96), the coercivity of B, the continuity of B, P and E , Cauchy-
Shwartz inequality and the inequality (48) we deduce from (95) that there exists c > 0
such that for all ξh ∈ W h

∥∥ϕn − ϕhkn ∥∥2

W
≤ c

{∥∥un − uhkn ∥∥2

V
+
∥∥θn − θhkn ∥∥2

L2(Ω)
+
∥∥ξh − ϕn∥∥2

W

}
. (97)

Now, we combine (88), (93) and (97) to obtain that there exists a constant c > 0
such that for all {whi }ni=1 ⊂ V h, {ξhi }ni=1 ⊂ W h and {ηhi }ni=1 ⊂ Qh

∥∥vn − vhkn ∥∥2

H
+
∥∥θn − θhkn ∥∥2

L2(Ω)
+
∥∥ϕn − ϕhkn ∥∥2

W
+ k

n∑
i=1

(∥∥vi − vhki ∥∥2

V

+
∥∥θn − θhkn ∥∥2

Q

)
≤
∥∥v0 − vh0

∥∥2

H
+
∥∥θ0 − θh0

∥∥2

L2(Ω)
+
∥∥ϕ0 − ϕh0

∥∥2

W

+ c

[
k

n∑
i=1

(
‖v̇n − δvn‖2

H +
∥∥∥θ̇n − δθn∥∥∥2

L2(Ω)
+
∥∥vn − whi ∥∥2

H

+
∥∥vn − whi ∥∥2

V
+
∥∥θi − ηhi ∥∥2

Q
+
∥∥ϕi − ξhi ∥∥2

W

)
+ k

n∑
i=1

(∥∥ui − uhki ∥∥2

V
+
∥∥θi − θhki ∥∥2

L2(Ω)
+
∥∥ϕi − ϕhki ∥∥2

W

)
+k

n∑
i=1

(
‖ui − ui−1‖2

V + ‖θi − θi−1‖2
L2(Ω) + ‖θi − θi−1‖2

Q + ‖ϕi − ϕi−1‖2
W

)]

+ 2k
n∑
i=1

((δ(vi − vhki ), vi − whi ))H + 2k
n∑
i=1

(δ(θi − θhki ), θi − ηhi )L2(Ω).

(98)

Recalling that
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2k
n∑
i=1

((δ(vi − vhki ), vi − whi ))H ≤ γ1

∥∥vn − vhkn ∥∥2

H
+ c
{∥∥vn − whn∥∥2

H

+
∥∥v0 − vh0

∥∥2

H
+
∥∥v1 − wh1

∥∥2

H

}
+ k

n−1∑
i=1

∥∥vi − vhki ∥∥2

H

+
1

k

n−1∑
i=1

∥∥vi − whi − (vi+1 − whi+1)
∥∥2

H
.

(99)

and

2k
n∑
i=1

(δ(θi − θhki ), θi − ηhi )L2(Ω) ≤ γ2

∥∥θn − θhkn ∥∥2

L2(Ω)
+ c
{∥∥θn − ηhn∥∥2

L2(Ω)

+
∥∥θ0 − θh0

∥∥2

L2(Ω)
+
∥∥θ1 − ηh1

∥∥2

L2(Ω)

}
+ k

n−1∑
i=1

∥∥θi − θhki ∥∥2

L2(Ω)

+
1

k

n−1∑
i=1

∥∥θi − ηhi − (θi+1 − ηhi+1)
∥∥2

L2(Ω)
.

(100)

where γ1 > 0 and γ2 are two parameters chosen to be small enough.

Also, we have( see [2] for more details)

∥∥ui − uhki ∥∥2

v
≤ ck

i∑
j=1

∥∥vj − vhkj ∥∥2

V
+ c(h2 + k2), i = 1, ..., N. (101)

Combining (98),(99), (100) and (101), using a discrete version of Gronwall’s inequality,
we obtain the following error estimates for all {whi }Ni=1 ⊂ W h, {ηhi }Ni=1 ⊂ Qh and



24 Alaoui M., Essoufi EL-H., Ouaanabi A., Bouallala M.

{ξhi }Ni=1 ⊂ W h

max
1≤n≤N

{∥∥vn − vhkn ∥∥2

H
+
∥∥θn − θhkn ∥∥2

L2(Ω)
+
∥∥ϕn − ϕhkn ∥∥2

W

}
+ k

N∑
i=1

(∥∥vi − vhki ∥∥2

V

+
∥∥θi − θhki ∥∥2

Q

)
≤ c

[∥∥v0 − vh0
∥∥2

H
+
∥∥θ0 − θh0

∥∥2

L2(Ω)
+
∥∥ϕ0 − ϕh0

∥∥2

W

+ max
1≤n≤N

{∥∥vn − whn∥∥2

H
+
∥∥θn − ηhn∥∥2

L2(Ω)
+
∥∥ϕn − ξhn∥∥2

W

}
+k

N∑
i=1

(
‖v̇i − δvi‖2

H +
∥∥∥θ̇i − δθi∥∥∥2

L2(Ω)
+
∥∥vi − whi ∥∥2

V
+
∥∥θi − ηhi ∥∥2

Q

)

+k
N∑
i=1

(
‖ui − ui−1‖2

V + ‖θi − θi−1‖2
L2(Ω) + ‖ϕi − ϕi−1‖2

W

)

+
∥∥v1 − wh1

∥∥2

H
+
∥∥θ1 − ηh1

∥∥2

L2(Ω)
+

1

k

N−1∑
i=1

∥∥vi − whi − (vi+1 − whi+1)
∥∥2

H

+
1

k

N−1∑
i=1

∥∥θi − ηhi − (θi+1 − ηhi+1)
∥∥2

L2(Ω)
+ h2 + k2

]
.

(102)

Next, we denote by Πh
Z the standard finite element interpolation operator over the

space Z. We choose whn = Πh
V vn, ξhn = Πh

Wϕn and ηhn = Πh
Qθn the finite element

interpolants of vn, ϕn and θn, respectively. Using standard finite element interpolation
error estimates[10], we have the following approximations∥∥vn − whn∥∥V ≤ ch ‖v‖C(0,T ;H2(Ω)d) , (103)∥∥vn − whn∥∥H ≤ ch2 ‖v‖C(0,T ;H2(Ω)d) , (104)∥∥ϕn − ξhn∥∥W ≤ ch ‖ϕ‖C(0,T ;H2(Ω)) , (105)∥∥θn − ηhn∥∥Q ≤ ch ‖θ‖C(0,T ;H2(Ω)) . (106)

We assume that the discrete initial conditions uh0 , vh0 , θh0 and ϕh0 are defined by

uh0 = Πh
V u0, vh0 = Πh

V v0, θh0 = Πh
Qθ0, ϕh0 = Πh

Wϕ0. (107)

Then (see [10, 13]) ∥∥u0 − uh0
∥∥
V
≤ ch ‖u‖C(0,T ;H2(Ω)d) , (108)∥∥v0 − vh0

∥∥
H
≤ ch ‖u‖C1(0,T ;V ) , (109)∥∥θ0 − θh0

∥∥
L2(Ω)

≤ ch ‖θ‖C(0,T ;Q) , (110)∥∥ϕ0 − ϕh0
∥∥
W
≤ ch ‖ϕ‖C(0,T ;H2(Ω)) . (111)
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Moreover, from (80) and (82) it is easy to check that

k
N∑
i=1

(
‖v̇i − δvi‖2

H +
∥∥∥θ̇i − δθi∥∥∥2

L2(Ω)

)
≤ ck2

(
‖v‖2

H2(0,T ;H) + ‖θ‖2
H2(0,T ;L2(Ω))

)
. (112)

Proceeding as in [9] we obtain that

1

k

N−1∑
i=1

(∥∥vi − whi − (vi+1 − whi+1)
∥∥2

H
+
∥∥θi − ηhi − (θi+1 − ηhi+1)

∥∥
L2(Ω)

)
≤ ch2

(
‖v‖2

H1(0,T ;V ) + ‖θ‖2
H1(0,T ;L2(Ω))

)
,

(113)

and from [13] we find

k
n∑
i=1

(
‖ui − ui−1‖2

V + ‖θi − θi−1‖2
L2(Ω) + ‖ϕi − ϕi−1‖2

W

)
≤ ck2

(
‖u‖2

H1(0,T ;V ) + ‖θ‖2
H1(0,T ;L2(Ω)) + ‖ϕ‖2

H1(0,T ;W )

)
.

(114)

Now, we combine the estimates (103)-(114) with (102) to find that there exists a
constant c > 0 such that

max
1≤n≤N

{∥∥vn − vhkn ∥∥2

H
+
∥∥ϕn − ϕhkn ∥∥2

W
+
∥∥θn − θhkn ∥∥2

L2(Ω)

+
N∑
i=1

k
(∥∥vi − vhki ∥∥2

V
+
∥∥θi − θhki ∥∥2

Q

)}
≤ c(h2 + k2).

(115)

Finally, we combine (115) with (101) it leads to (83).
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