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EXPLICIT FAST AND STABLE METHOD

FOR SOLUTION OF SOME COEFFICIENT INVERSE PROBLEMS

FOR PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS

Alexandre Grebennikov

Abstract A new approach for solution of inverse coe�cient problem for some types of par-

tial di�erential equations with variable coe�cient is considered. This approach is based on

proposed by author General Ray Principle and leads to the new GR-Method, which con-

sists in reduction of the partial di�erential equation to assemblage of ordinary di�erential

equations using local traces for considered functions and operators. New method presents

the solution of considered problems by explicit analytical formulas that use the direct and

inverse Radon transform. In the case of noised input data the regularization with Recursive

Spline Smoothing is used. Proposed method is realized by fast and stable algorithms and

MATLAB software, which quality is demonstrated by numerical experiments. Applications

to electric tomography and mathematical simulation in creation of nano-composite materials

with special heat-conductive properties are considered.
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1 Introduction

Mathematical and computer simulation is very important for modern investigations in
many applied areas. This simulation leads to solving direct and inverse problems [1],
[2] . Basic mathematical models that describe processes include traditional di�erentials
equations. In this paper we will consider two problems. The �rst problem is described
by the two dimensional Laplace type equation

∇ · (ε(x, y)∇u(x, y)) = 0, (x, y) ∈ Ω, (1)

where Ω - some limited open region on a plane.

The second problem corresponds to the parabolic equation:

ut(x, t) = (ε(x, t)ux(x, t))x, − 1 < x < 1, t > t0. (2)

Solution of such inverse problems is very important in mathematical simulation of
electrical tomography [3] and investigation of heat-conductive properties of materials
[4]. But all mathematical statements and known methods for solution of considering
inverse problems are non-linear [2], [3] and require a lot of time and memory in its
computer realization, that is not appropriated in modern investigations in mentioned
applied areas. We propose here another approach for the mathematical modelling of
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the distribution of the external physical �eld and measurement of the external data.
Proposed modelling is based on General Ray Principle (GRP) [5] and use the classic
Radon transformation [6]. GRP leads to the new explicit General Ray (GR) Method
and a fast linear algorithm for numerical solution of inverse problems.

2 Coe�cient Inverse Problem for the Laplace Type Equation

Let us consider a coe�cient inverse problem for the Laplace type equation (1) with
respect to the function ε(x, y). In traditional statement of inverse problems [2], [3]
it is supposed also that some family of functions Jn(x, y), u

0(x, y) are known on the
boundary curve Γ, and the next boundary conditions are satis�ed:

ε(x, y)
∂u(x, y)

∂n
= Jn(x, y), (x, y) ∈ Γ, (3)

u(x, y) = u0(x, y)), (x, y) ∈ Γ, (4)

where ∂/∂n is the normal derivative in the points of the boundary curve Γ. Mentioned
families of functions in the boundary conditions, as the rule, correspond to some scan-
ning scheme [3].

2.1 General Ray Method for Laplace Type Equation

In [5] we formulated GR Principle, which for the problems under investigation means to
construct an analogue of equations (1), (2) describing the distribution of the function
u(x, y) along of "General Local Rays", which are presented by some straight line l with
the Radon parametrization [5] due a parameter:x = pcos(φ)− τsin(φ), y = psin(φ) +
τcos(φ) . Here |p| is a length of the perpendicular from the center of coordinates to
the line l, φ ∈ [0, π] is the angle between the axis x and this perpendicular. Using
this parametrization, we shall de�ne traces of functions u(x, y), ε(x, y), and function
f(x, y)(that describes some boundary conditions), at (x, y) ∈ l for �xed p, as functions
u(τ), ε(τ), f(τ), of variable τ. We suppose that the domain Γ is a convex one. Let
us de�ne for every �xed p and φ the functions u0(p, φ) = u(τ0), u1(p, φ) = u(τ1)
for parameters τ0, τ1, which correspond to the points of the intersection of the line l
and boundary of the domain. Hence, the GR Principle leads to the assemblage
(depending of p, φ ) of ordinary di�erential equations:

(ε(τ)u
′

τ (τ))
′

τ = 0, τ ∈ [τ0, τ1], (5)

Equation (5) for �xed p and φ represents the local analogy of the equation (1).
Boundary conditions lead to the corresponding local boundary conditions for u(τ) at
points τ0, τ1.

We consider for �xed p and φ following boundary conditions

ε(τ0)u
′

τ (τ0) = J(p, φ), (6)

u(τ1)− u(τ0) = v(p, φ), (7)
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for given functions v(p, φ) and J(p, φ) . Equations (5), (6), (7) constitute the basic
mathematical model for the inverse problem of reconstructing the coe�cient ε(x, y).
Boundary condition (7) can be obtained from the data in the boundary condition (4).
But boundary condition (6) has one principle di�erence with (3), because (6) includes
derivative by τ that corresponds to direction on straight line l, not to normal direction
for boundary curve Γ . It is possible to calculate function J(p, φ) using function of
boundary condition (3), if we know ε(x, y) on the boundary and angle between the
normal vector and straight line l in each boundary point.

The family of equations (5) - (7) we consider as the basic mathematical model in
application of GRP for considering type of inverse problems. Supposing that di�erent
components in the considered structure have the smooth distribution, such that the
functions ε(τ)u

′
τ (τ) and u

′
τ (τ) are continuous, and integrating twice equation (5) with

respect to τ , we obtain for ε(x, y) the following formula

ε(x, y) = 1/R−1[
v(p, φ)

J(p, φ)
], (8)

where R−1 is the inverse Radon transform operator. Formula (8) represents the General
Ray method for the inverse problem. This formula can be generalized and applied also
for structures with piecewise constant characteristics.

2.2 Application to the Electric Tomography

Computer Tomography consists in the image reconstruction of an interior of a body
using the measurements on its surface of characteristics of some external �eld. It can
be state mathematically as a coe�cient inverse problem for a di�erential equation de-
scribing the distribution of the �eld in considered region. Coe�cients are the functions
of the space variables and characterize properties of a media.

Electrical Impedance Tomography (EIT) is the most developed approach for electric
tomography that includes the electric resistance (ERT) or capacitance tomography
(ECT) schemes [3].

In ERT the unction Jn(x, y) is given, function u
0(x, y)) is measured. In ECT the

function u0(x, y)) is given, the value of the normal component of electric induction
Jn(x, y) is related with measured mutual capacitances [3]. In both ERT and ECT
schemes the electric �eld is produced by the same electrodes that serve as measuring
elements i.e. the electrodes are active. May be this activity of electrodes, which
provokes its mutual in�uence, is the cause of impossibility to use a great number of
electrodes and obtain the su�ciently large number of measurements.

We propose here another variant of the Electrical Tomography, when the external
electromagnetic �eld V⃗ (l) is produced by active electrodes, located outside of the Ω,
initiates some distribution of the electric potential inside the domain Ω. At that, we
propose that measurements of necessary values would be realized on the boundary
curve Γ with another, no active electrodes. The corresponding scheme is presented at
Fig. 1, where active electrodes are marked with arcs on the external circle A of radius
R and inactive electrodes are marked as arcs on the internal circle B, which is the
board of the domain.
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In proposing new scheme we can calculate potential u0(τ) and induction function
J(p, φ) on direction l, so we need to make measurements only of values of the potential
u(τ1).

It is very important that electrodes on the boundary Γ do not produce the external
electric �eld (are not active) and serve only for measuring data. Therefore, the proposed
approach gives in principal the possibility to use a large number of electrodes and
measurements of the input values of functions u(τ1) and reconstruct the desired image
more perfectly.

Figure 1: The measurement scheme of the external data.

Figure 2: Illustration for synthetic example.

3 Coe�cient Inverse Problem for the Parabolic Equation

We consider the boundary value problem for the parabolic equation in the form:

ut(x, t) = (ε(x, t)ux(x, t))x, (x, t) ∈ Ω; (9)
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u(x, t0) = f 0(x),

u(x0(t), t) = f0(t),

u(x1(t), t) = f1(t),

Ω = [x0(t), x1(t)]× [t0, t1],

where unction f 0(x) corresponds to initial condition, functions f0(t), f1(t), corre-
spond to boundary conditions. Inverse problem consists in identi�cation of unknown
function ε(x, t) under additional supposition that the function f 1(x) is given, such that
for some moment t1: u(x, t1) = f 1(x).

3.1 General Ray Method for Parabolic Equation

Let us use the Radon parametrization [6] of the line l in domain Ω with a parameter
τ for variables x = x(τ) = pcos(φ) − τsin(φ), t = t(τ) = psin(φ) + τcos(φ), and
substitute these into equation (9). So, we obtain as the local analogy of equation (9)
the next assemblage of ODE:

K(p, φ)u
′

τ (τ) = (ε(τ)u
′

τ (τ))
′

τ , τ ∈ [τ0, τ1]; (10)

K(p, φ) =
cos(φ)

sin2(φ)
, φ ̸= 0, π, (11)

where u(τ) = u(x(τ), t(τ)),ε(τ) = ε(x(τ), t(τ)), parameters τ0, τ1 also correspond to
the points of the intersection of the line l and boundary of the domain. We suppose
that the next boundary conditions are known

u(τ1)− u(τ0) = v(p, φ), (12)

ε(τ0)u
′

τ (τ0) = J(p, φ) (13)

for given functions v(p, φ) and J(p, φ). Integrating equation (10) with respect to τ and
using conditions (12), (13), we obtain for the following formula

ε(x, t) = 1/R−1[
1

K(p, φ)
ln(

v(p, φ)

J(p, φ)
K(p, φ) + 1)], (14)

which present GR-method for solution of inverse problem for considering case.

3.2 Possible Application for mathematical simulation of nano-

composite materials

Investigation of heat-conductive properties of materials is very important for many
applied areas. Mathematical and computer simulation is one of the important steps
in this investigation. This simulation leads to solving direct and inverse heat transfer
problems. Modern investigations of nano-composite materials are characterized by a
penetration with more substantially detailed in the structure of investigated objects



Alexandre Grebennikov 97

and phenomena. Basic mathematical models that describe the heat-conductive pro-
cesses include traditional di�erentials equations, nevertheless frequently with speci�c
elements. This requires elaboration of the new analytical and numerical methods of
its study, adapted to the modern requirements. One of the most important of these
requirements is the possibility to obtain a su�cient increase of the exactitude at the
solution of the problems in the real time allowed, or, that is equivalent, to resolve
the problem with appropriate exactitude by fastest manna. The mathematical models
and the known numerical methods often do not satisfy to these requirements at their
computer realization, particularly for solution of desired heat transfer problems. Con-
structed GR-method can be recommended for mathematical simulation in creation of
nano-composite materials because of its fast computer realization.

4 Regularization of the GR Method

Analysis of formulas for inverse Radon transformation shows that its instability for
discrete noised data is equivalent to the instability of the problem of the numerical
di�erentiation of the noised function v(p, φ) with respect to the variable p. The reg-
ularization of the inversion of Radon transform was constructed by author in [7] on
the base of the Recursive Smoothing by splines (RSS), which was used in [8] for post-
processing to improve the electrical capacitance tomography image reconstruction.

RSS uses the explicit formulas for two-dimensional spline on the regular uniform
grid {pi, φj},pi = −1+h(i−1),i = −2, ..., n+2; φj = −1+hφ(j−1), i = −2, ..., n+2;
h = 2/(n− 1), hφ = π/(n− 1). Let sj(w) be a local basic cubic spline, constructed on
the units wi−2, ..., wi+2; i = 0, ..., n+1; where w is p or w is φ. Mentioned formulas are
the next ones:

Sk(p, φ) =
n∑

i=1

n∑
j=1

Sk−1(pi, φj)si(p)sj(φ), (15)

k = 1, 2, ..., K, S0(pi, φj) = v(pi, φj). (16)

The number of smoothes K is the regularization parameter, which can be chosen
here in accordance with residual (discrepancy) principle, using the discrete estimation
δ of the errors. It means, if the values of the exact function v(p, φ) and the noised
function v(p, φ) satisfy to the conditions

|v(pi, φj)− v(pi, φj)| ≤ δ, i, j = 1, ..., n, (17)

then K is chosen as maximum among all k , for which the inequality is ful�lled:

n∑
i=1

n∑
j=1

|Sk(pi, φj)− v(pi, φj)|2 ≤ cδ2n2, (18)

where c = const > 1. Theoretical and numerical justi�cations of the regularization
properties of this type of smoothing are presented in [9], [10].

If for structures with piecewise constant characteristics the set ε̂ = {ε0, ε1, ε2} of
the known values εi of the function ε(x, y) is given, then the algorithm includes also
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the projection of the pre-reconstructed data to the set ε̂ with respect to the absolute
or relative criterions [7].

We underline that presented algorithms are based on fast numerical realization of
the inverse Radon transform and on explicit approximation formulas (15) - (16) that
do not require solving any equations. It guarantees the fast property of proposed
algorithms in a hole.

5 Numerical Experiments

We have constructed the numerical realization of formula (7) that we call "GR-algorithm".
This algorithm does not require solving any equation, because the Radon transform
can be inversed by fast algorithm using discrete FFT algorithm.

We tested scanning GR-algorithm on mathematically simulated model examples.
The �rst and second presented experiments correspond to piecewise constant structure.
We considered inside the unit circle Ω two di�erent internal elements Ω1,Ω2 of di�erent
permittivity, as it is shown at Fig. 2. Simulation consists in the next steps:

1) calculation by electrostatic formulas values of functions J(p, φ) and u(τ0) for
every �xed angle φ and parameter p on the boundary and analytic solution the direct
Cauchy problem for equation (5);

2) calculation the value u(τ1) and v(p, φ);
3) numerical realization of formula (8).
The deduction of the corresponding formulas at steps 1) and 2) are presented in

details at [11]. These formulas give us the important result of this simulation: the
relation of functions v(p, φ)/J(p, φ) dos not depend on J(p, φ) and the value of the
potential at the border, so on radius of the external circle A, that con�rms the validity
of proposed method and constructed algorithm. The step 3) was realized on discrete
simulated data with n nodes for every variable.

In the �rst example we use exact values in n=31 discrete points for the case
ε0(x, y) = 1, ε1(x, y) = 2, ε2(x, y) = 70. It is di�cult case for the reconstruction,
because it corresponds to the greater scale of values ε̂ = {ε0, ε1, ε2}, when the post-
processing (projection) is required even for the pre-reconstruction that used exact data.
In Fig. 3 there are presented reconstructions of the structure image by GR-algorithm:
graph (a) - exact distribution; graph (b) - reconstruction without post-processing,
graph (c) - reconstruction with post-processing using the absolute criterion projection;
(d) - reconstructions with post-processing using the relative criterion projection.

The second presented numerical experiment corresponds to the reconstruction of
the structure for the case ε0 = 1, ε1 = 2, ε2 = 3, using simulated noised input data, i.e.
values of a function v(p, φ) = v(p, φ)(1+δ(p, φ)), where δ(p, φ) is the randomized func-
tion with estimation: ∥δ(p, φ)∥C[Ω] ≤ δ. Results of the regularized reconstruction for
n=31,δ = 0.05 are presented at Fig. 4: graph (a) - exact ε(x, y); graph (b) - reconstruc-
tion with noised v(p, φ) without regularization; graph (c) - reconstruction with noised
v(p, φ) by regularized GR-algorithm with RSS only, without post-processing projec-
tions; graph (d) - reconstruction with noised v(p, φ) by regularized GR-algorithm with
RSS and the post-processing, using absolute criterion projection of pre-reconstructed
image.
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Figure 3: The 1-st experiment.

The third experiment corresponds to continue distribution of the characteristic
ε(x, y) = 1/cos(x+ y) in the domain Ω as the circle of the radius r=0.5. The external
stationary �eld produces in Ω the potential u(x, y) = sin(x + y), such as J(p, φ) =
cos(φ) − sin(φ), exact function v(p, φ) = 2cos(p(sin(φ) + cos(φ))(sin(τ0(sin(φ) +
cos(φ))), τ0 = −

√
0.25− p2. A noised function v(p, φ) we constructed in the same form

as for the second example. Results of the numerical experiments for n=51, estimation
δ = 0.03 are presented at Fig. 5: graph (a) - exact ε(x, y); graph (b) - reconstruction
with exact v(p, φ); graph (c) - reconstruction with noised v(p, φ) without regularization;
graph (d) - reconstruction with noised v(p, φ) by regularized GR-algorithm with RSS.

Algorithms and the MATLAB program package to realise formula (14) are under
construction.
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Figure 4: The 2-nd experiment.

Figure 5: The 3-d experiment.
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