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Abstract We deal with linear operator integral equations (OIE) - of the first kind and

first-order in time integro-differential equations of degenerate type - in a Banach space X,

the related kernels being piecewise continuous with linear closed operator values in X. The

curve when such operators may have a jump is s = α(t), where α has the properties (1.3),

(1.4). For the solutions to equations (OIE), possibly endowed with initial conditions, we prove

some existence and uniqueness results. Applications are given to linear integro-differential

equations with kernels of ”elliptic” and ”parabolic” type.
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1 Introduction

This paper deals with the following two classes of operator equations in a Banach space
X: ∫ α(t)

0

K1(t, s)u(s) ds+

∫ t

α(t)

K2(t, s)u(s) ds = f(t), t ∈ [0, T ], (1.1)

and

L0(t)u(t) +

∫ α(t)

0

[K1,0(t, s)u
′(s) +K1,1(t, s)u(s)] ds

+

∫ t

α(t)

[K2,0(t, s)u
′(s) +K2,1(t, s)u(s)] ds = f(t), t ∈ [0, T ], (1.2)

where α : [0, T ]→ R is any function enjoying the properties

α ∈ C1([0, T ];R), α is increasing on [0, T ], (1.3)

0 ≤ α(t) < t, t ∈ (0, T ], α(0) = 0, 0 ≤ α′(0) < 1. (1.4)
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Set

ω1(T ) = {(t, s) ∈ R2 : 0 < s < α(t) < t < T}, (1.5)

ω2(T ) = {(t, s) ∈ R2 : α(t) < s < t < T}. (1.6)

Finally, the kernels Kj(t, s) and Kj,k(t, s), j = 1, 2 and k = 0, 1, are linear operators
with domains contained in X for all (t, s) ∈ ωj(T ), while L0(t) is a linear bounded
operator for all t ∈ [0, T ].
We shall consider the following two cases:

(C0) let Y and X be a pair of Banach spaces with Y ↪→ X and let Kj and DtKj

belong to C(ωj(T );L(Y ;X)), j = 1, 2;

(C1) let L0(t) be a family of (possible non-invertible) linear bounded operators in L(X)
defined on the interval [0, T ] such that L0 ∈ C1([0, T ];L(X)). Let Kj,0, DtKj,0

and Kj,1, DtKj,0 belong, respectively, to C(ωj(T );L(X)) and C(ωj(T );L(Y ;X)).
j = 1, 2, let L0(t) + K2,0(t, t) belong to L(X) and be invertible in L(X) for all
t ∈ [0, T ] and ‖[L0(t) +K2,0(t, t)]

−1‖L(X) ≤ µ1, for some positive µ1.

In our applications K2(t, t), and [L0(t) +K2,0(t, t)]
−1[L′0(t) +K2,1(t, t)], corresponding,

respectively, to the cases (C0) and (C1), will be uniformly invertible or uniformly
parabolic for all t ∈ [0, T ].
First we notice that in case (C0) we have an actual operator equation of the first kind
with a (possibly) discontinuous operator kernel. We stress that pure integral equations
of the first kind, even in the scalar case, are ill-posed. Then we stress that in case
(C1) the operators Kj(t, s,Ds) = K2,0(t, s)Ds − Kj,1(t, s), j = 1, 2, are of the first-
order in Dt, so that the principal operator in (1.2) is inside the latter integral, so that
also in the scalar case, when dealing with pure integral equations, we have a (singular)
equation of the third kind - which is known to be an ill-posed problem - with a (possibly)
discontinuous operator kernel.
Moreover, even after differentiation with respect to t (cf. Section 2), operator L0(t)u

′(t)
needs not to be the principal part in the differentiated equation, since L0(t) may be
not invertible for all t ∈ [0, T ], while L0(t)+K2,0(t, t) is, according to assumption (C1).
Possible motivations for dealing with equations of this type are twofold: the first con-
sists in a natural generalization of the results proved in [4], [12]-[17], concerning the
pure integral case (C0), while the latter consists in interpreting the integro-differential
case (C1), i.e. equation (1.2), as the limit case of the equation

εA(t,Dt)u(t) + L0(t)u(t) +

∫ α(t)

0

[K1,0(t, s)u
′(s)−K1,1(t, s)u(s)] ds

+

∫ t

α(t)

[K2,0(t, s)u
′(s)−K2,1(t, s)u(s)] ds = f(t), t ∈ [0, T ], (1.7)

where A(t,Dt) is a family of linear linear differential operators defined on the interval
[0, T ] and taking their values in the space of linear closed, but discontinuous operators,
while ε is a positive (small) parameter.
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To our knowledge a complete study concerning the integral operator equation (1.1) of
the first kind with the approximating equation (1.7), (with A(t,Dt) = I) is carried
out in [1, Chapt. 5]. There the author deals with a general operator kernel K(t, s)
acting in scales of Hilbert ({H}s≥0) or Banach ({X}s≥0) spaces, but the aim consists in
establishing the uniqueness of the solution to (1.1)(with L0(t) ≡ 0) and approximating
it - in suitable spaces - by the solutions of the family of equations

εvε(t) +

∫ t

0

K(t, s)vε(s) ds = f(t), t ∈ [0, T ], ε ∈ R+.

We stress that the assumptions made in [1] to deduce the desired results are remarkably
different from ours, and, of course, no existence result can be found in [1, Chapt. 5].
Apart from this book 1, we observe that there is not a widely developed theory, as far
as Banach spaces are concerned. Indeed, all the other results we have found [2, 5, 6,
8, 10, 11, 17] are related to specific integral or integro-differential equations, while the
monograph [3] is devoted to scalar Volterra integral equations of the first kind, only.
We give now the plan of the paper. Section 2 provides existence and uniqueness results
for the solution to problem (1.1) under assumptions (C0). Section 3 supplies auxiliary
results for problem (1.2) under assumptions (C1), while Section 4 provides existence
and uniqueness results for such a problem. Finally, Section 5 deals with a boundary
value problem for an elliptic integro-differential equation “of the first kind”. Then
an initial and boundary value problem is dealt with for a first-order in time integro-
differential equation “of the third kind”, or of degenerate type. In the latter case the
existence and uniqueness results are proved via Semigroup Theory. Finally, Section 6
(Appendix) supplies the outlines of the proof of Theorem 3.4 in Section 3.

2 The first abstract integral equation in the (C0)-

case

Associated with function α : [0, T ] → R enjoying the properties (1.3) and (1.4) we
consider the integral operator equation of the first kind (1.1) related to the pair of
Banach spaces Y and X, where the operator-valued functions Kj : ωj(T )→ L(Y ;X),
j = 1, 2, and the right-hand side f enjoy the following properties:

Kj, DtKj ∈ C(ωj(T );L(Y ;X)), j = 1, 2, (2.1)

the pair (Kj, DtKj) can be continuously extended to ωj(T ), (cf. (1.5)), (1.6)) by a pair
still denoted by (Kj, DtKj), j = 1, 2;

K2(t, t) is invertible for any t ∈ [0, T ] and t→ K2(t, t)
−1 ∈ C([0, T ];L(X;Y )); (2.2)

f ∈ C1([0, T ];X), f(0) = 0. (2.3)

The main result of this section is

1where also scalar cases can be found.
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Theorem 2.1. Under assumptions (C0), (2.1)-(2.3) and the following

α′(0)‖K2(0, 0)−1[K2(0, 0)−K1(0, 0)]‖L(Y ;X) < 1 (2.4)

equation (1.1) admits a unique global solution u ∈ C([0, T ];L(Y ;X)) continuously
depending on the data f ∈ C1([0, T ];X).

First we need the following lemma.

Lemma 2.1. The linear mappings

K1u(t) =

∫ α(t)

0

K1(t, s)u(s) ds, t ∈ [0, T ],

K2u(t) =

∫ t

α(t)

K2(t, s)u(s) ds, t ∈ [0, T ],

map C([0, T ];Y ) into C([0, T ];X) and satisfy the estimates

‖K1u‖C([0,T ];X) ≤ α(T )‖K1,0‖C(ω1(T );L(Y,X))‖u‖C([0,T ];Y ), (2.5)

‖K2u‖C([0,T ];X) ≤ max
t∈[0,T ]

[t− α(t)]‖K2,0‖C(ω2(T );L(Y,X))‖u‖C([0,T ];Y ). (2.6)

Proof. For the sake of simplicity we limit ourselves to considering the case j = 2. Let
t1, t2 ∈ (0, T ] so that

0 < α(t1) < α(t2).

Consider then the following identity∫ t2

α(t2)

K2(t2, s)u(s) ds−
∫ t1

α(t1)

K2(t1, s)u(s) ds

=

∫ t2

t1

K2(t2, s)u(s) ds+

∫ t1

α(t2)

[K2,0(t2, s)−K2,0(t1, s)]u(s)ds−
∫ α(t2)

α(t1)

K2(t1, s)u(s)ds.

Whence we easily imply that K2u is right–continuous at t1, since the segments (t2, s),
with s ∈ [t1, t2] and s ∈ [α(t2), t1] are contained in the compact set ω2(T ) where K2,0

is continuous.
Interchanging the roles of t1 and t2 we show that K2u is also left–continuous for any
t1 ∈ (0, T ]. Finally, the continuity of K2u at t = 0 easily follows from the estimate

‖K2u(t)‖ ≤ ‖K2‖C(ω2(T );L(Y,X))‖u‖C([0,T ];Y )[t− α(t)], t ∈ [0, T ]. (2.7)

From (2.7) we immediately derive the latter estimate in (2.6).
Proceeding similarly, we can prove the analogous property for K1.
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Proof of Theorem 2.1. We now differentiate both sides of the integral equation (1.1).
We obtain the following equation, which is easily seen to be equivalent to (1.1) due to
the consistency conditions (2.3):

K2(t, t)u(t)− α′(t)[K2(t, α(t))−K1(t, α(t))]u(α(t))

+

∫ α(t)

0

DtK1(t, s)u(s) ds+

∫ t

α(t)

DtK2(t, s)u(s) ds = f ′(t), t ∈ [0, T ]. (2.8)

Applying the operator K2(t, t)
−1 (cf. (C0)) to both sides in (2.8), we easily get that u

solves the integro-functional equation

u(t) = K3(t)u(α(t)) +

∫ α(t)

0

K4(t, s)u(s) ds

+

∫ t

α(t)

K5(t, s)u(s) ds+ f1(t), t ∈ [0, T ], (2.9)

where the operators K3 ∈ C([0, T ];L(Y )), K4 ∈ C(ω1(T );L(Y ;X)), K5 ∈ C(ω2(T );
L(Y ;X)) and the function f1 ∈ C([0, T ];X) are defined, respectively, by

K3(t) = α′(t)K2(t, t)
−1[K2(t, α(t))−K1(t, α(t))],

K3+j(t, s) = K2(t, t)
−1DtKj(t, s), j = 1, 2,

f1(t) = K2(t, t)
−1f ′(t).

We now first show that equation (2.9) can be solved locally in time. For this task we
observe that

K3(t)→ α′(0)K2(0, 0)−1[K2(0, 0)−K1(0, 0)] in L(Y ;X) as t→ 0 + . (2.10)

From assumption (2.4) we easily deduce the following estimate for any t ∈ [0, T ]:∥∥∥∥∥K3(t)u(α(t)) +

∫ α(t)

0

K4(t, s)u(s) ds+

∫ t

α(t)

K5(t, s)u(s) ds

∥∥∥∥∥
X

≤

[
‖K3(t)‖L(Y,X) +

∫ α(t)

0

‖K4(t, s)‖L(Y,X) ds+

∫ t

α(t)

‖K5(t, s)‖L(Y,X) ds

]
× ‖u‖C([0,T ];Y ).

Whence, for all τ ∈ (0, T ], we conclude that∥∥∥∥∥K3 +

∫ α(·)

0

K4(·, s) ds+

∫ ·
α(·)

K5(·, s) ds

∥∥∥∥∥
C([0,τ ];L(Y ;X))

≤ ‖K3‖C([0,τ ];L(Y ;X)) + α(τ)‖K4‖C(ω1(τ);L(Y ;X)) + τ‖K5‖C(ω2(τ);L(Y ;X)).
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Consequently, owing to the limit relation (2.10), equation (2.9) admits a unique solution
for any small enough τ . Then, taking advantage of property (1.4), 2 the same procedure
described in [4] allows to prove that equation (2.9) admits a unique global solution
u ∈ C([0, T ];L(Y ;X)) continuously depending on the datum f ∈ C1([0, T ];X). �

3 The abstract integro-differential equation (1.2)

in the (C1)-case: auxiliary results

Before making our assumptions on the data necessary to solve a Cauchy problem related
to equation (1.2), we need to introduce some Hölder spaces.
For any pair of Banach spaces X1 and X2 we denote by C0,δ(ωj(T );L(X1;X2)), (resp.

Cδ([0, T ];X)), δ ∈ (0, 1), the vector space consisting of all functions K ∈ C(ωj(T );
L(X1;X2)) (resp. f ∈ Cδ([0, T ];X)) such that

|K|C1,δ(ωj(T );L(X1;X2))
= sup

(t1,s1),(t2,s2)∈ωj(T ), s1 6=s2[
|t2 − t1|+ |s2 − s1|δ

]−1‖K(t2, s2)−K(t1, s1)‖L(X1;X2) < +∞, (3.1)(
|f |Cδ([0,T ];X) = sup

t1,t2∈[0,T ], t1 6=t2
|t2 − t1|−δ‖f(t2)− f(t1)‖ < +∞.

)
(3.2)

We observe that C0,δ(ωj(T );L(X1;X2)), (resp. Cδ([0, T ];X)) turns out to be a Banach
space when endowed with the norm

‖K‖C0,δ(ωj(T );L(X1;X2))
= ‖K‖C(ωj(T );L(X1;X2))

+ |K|C0,δ(ωj(T );L(X1;X2))
. (3.3)(

‖f‖Cδ([0,T ];X) = ‖f‖C([0,T ];X) + |f |Cδ([0,T ];X).
)

(3.4)

In this section we will assume that here the pair (α, f) satisfies, the following properties
stricter than (1.3), (1.4) and (2.3):

α ∈ C1+β([0, T ];R), (3.5)

β ∈ (0, 1), α(0) = 0, 0 ≤ α′(t) < 1, t ∈ [0, T ], (3.6)

f ∈ C1+β([0, T ];X), f(0) = 0. (3.7)

Moreover, we assume that the sixtuplet (K1,0, K2,0, K1,1, K2,1, L0, u0) satisfies, in addi-
tion to assumptions (C1), also the following ones for some δ ∈ (0, 1):

Kj,0 ∈ C1,δ(ω2(T );L(Y ;X)), j = 1, 2, (3.8)

t→ K2,0(t, t) ∈ Cδ([0, T ];L(X)), (3.9)

t→ K2,1(t, t) ∈ Cδ([0, T ];L(Y ;X)), (3.10)

2For a similar procedure see also Section 3.
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α′(0)[K2,0(0, 0)−K1,0(0, 0)] = O, (3.11)

L0 ∈ C1+δ([0, T ];L(X)), u0 ∈ N(L0(0)) ∩ Y, (3.12)

f ′(0) + [L0(0) +K2,0(0, 0)]−1

×
{
L′0(0) +K2,1(0, 0) + α′(0)[K2,0(0, 0)−K1,0(0, 0)]

}
u0

∈ (Y ;X)β,∞, (3.13)

(Y ;X)β,∞ denoting the intermediate space between Y and X of order β and index
p = +∞, (cf. [7, Chapt. 2]).

We will deal with the initial problem: look for a function u ∈ C1([0, T ];X)∩C([0, T ];Y )
satisfying

L0(t)u(t) +

∫ α(t)

0

[K1,0(t, s)u
′(s) +K1,1(t, s)u(s)] ds

+

∫ t

α(t)

[K2,0(t, s)u
′(s) +K2,1(t, s)u(s)] ds = f(t), t ∈ [0, T ], (3.14)

u(0) = u0 ∈ N(L0(0)) ∩ Y. (3.15)

We now explain why the initial datum u0 has to be restricted to N(L0(0)). This is
an immediate consequence of the fact that from equation (1.2) we deduce that the
necessary condition L0(0)u(0) = f(0) = 0 (cf. (3.7)) must be fulfilled by the initial
datum u(0).
Finally, we observe that, if N(L0(0)) = {0}, then u0 = 0.
The main result of this section is

Theorem 3.1. Under assumptions (C1) and (3.5)-(3.13) problem (3.14), (3.15) ad-
mits a unique global solution u ∈ C1([0, T ];X) ∩ C([0, T ];Y ) continuously depending
on the data (f, u0) ∈ C1([0, T ];X)× Y .

Proof of Theorem 3.1. Differentiating both sides of (3.14) with respect to t, we obtain
the first-order differential-functional equation

[L0(t) +K2,0(t, t)]u
′(t)− α′(t)[K2,0(t, α(t))−K1,0(t, α(t))]u′(α(t))

+[L′0(t) +K2,1(t, t)]u(t)− α′(t)[K2,1(t, α(t))−K1,1(t, α(t))]u(α(t))

+

∫ α(t)

0

[DtK1,0(t, s)u
′(s) +DtK1,1(t, s)u(s)] ds

+

∫ t

α(t)

[DtK2,0(t, s)u
′(s) +DtK2,1(t, s)u(s)] ds = f ′(t), t ∈ [0, T ]. (3.16)

Introduce then the operators K3, K5 : [0, T ] → L(X), K4, K5 : [0, T ] → L(Y ;X),
K5+j : ωj(T )→ L(X), K7+j : ωj(T )→ L(Y ;X), j = 1, 2, and the function g : [0, T ]→
Y defined by

K3(t) = [L0(t) +K2,0(t, t)]
−1[K2,0(t, α(t))−K1,0(t, α(t))], (3.17)
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K4(t) = −[L0(t) +K2,0(t, t)]
−1[L′0(t) +K2,1(t, t)], (3.18)

K5(t) = [L0(t) +K2,0(t, t)]
−1[K2,1(t, α(t))−K1,1(t, α(t))], (3.19)

K5+j(t, s) = [L0(t) +K2,0(t, t)]
−1DtKj,0(t, s), j = 1, 2, (3.20)

K7+j(t, s) = [L0(t) +K2,0(t, t)]
−1DtKj,1(t, s), j = 1, 2, (3.21)

g(t) = [L0(t) +K2,0(t, t)]
−1f ′(t). (3.22)

Applying the operator [L0(t) + K2,0(t, t)]
−1 to both sides of (3.16), we deduce that u

solves the following Cauchy problem, which is equivalent to (3.14), (3.15):

u′(t)− α′(t)K3(t)u
′(α(t))−K4(t)u(t)− α′(t)K5(t)u(α(t))

+

∫ α(t)

0

[K6(t, s)u
′(s) +K8(t, s)u(s)] ds

+

∫ t

α(t)

[K7(t, s)u
′(s) +K9(t, s)u(s)] ds = g(t), t ∈ [0, T ],

u(0) = u0 ∈ N(L0(0)) ∩ Y. (3.23)

We stress that, to uniquely solve the first-order in time equation (3.23) we do need
an initial condition like (3.24). Moreover, if we did not prescribe any condition to
equation (3.14), (3.23) would admit infinitely many solutions depending on a vector
c ∈ N(L0(0)).

Theorem 3.2. For any h ∈ Cβ([0, T ];X), β ∈ (0, δ), the functional equation

ζ(t)− α′(t)K3(t)ζ(α(t)) = h(t), t ∈ [0, T ], (3.24)

admits a unique solution ζ ∈ Cβ([0, T ];X), with ζ(0) = h(0), represented by

ζ(t) = h(0) + h̃(t) + (Zh̃)(α(t)), t ∈ [0, T ], (3.25)

where

h̃(t) = h(t)− [I − α′(t)K3(t)]h(0), t ∈ [0, T ]. (3.26)

Moreover, there exists τ0 ∈ (0, T ] such that Z satisfies the estimate

‖Z‖L(Cβ([0,τ ];L(X)))) ≤
J1(K3, τ)

1− J1(K3, τ)
, τ ∈ (0, τ0], (3.27)

where J1(K3, τ), τ ∈ (0, τ0], is defined by

J1(K3, τ) := max
{
‖α′K3‖C([0,τ ];L(X))|α′|βCβ([0,τ ];R), τ

β|α′|Cβ([0,T ];R)‖K3‖C([0,T ];L(X))

+ ‖α′‖C([0,T ];R)|K3|Cβ([0,T ];L(X))

}
< 1. (3.28)
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Finally, the restriction of Z to [0, τ0] is defined by

(Zh̃)(t) =
+∞∑
n=1

[ n−1∏
j=0

(α′ ◦ αj)(t)K3(α
j(t))

]
h̃(αn−1(t)), t ∈ [0, τ ], (3.29)

where ◦ denotes composition and αj = (α◦)j−1α, j ∈ N\{0}, α0(t) = t.

Proof. First we observe that, according to our assumption on α′, there exists a τ1 ∈
(0, T ] satisfying the following inequalities for all τ ∈ (0, τ1] (cf. (1.4)):

0 ≤ α′(τ) ≤ 1, (3.30)

‖α′K3‖C([0,τ ];L(X))|α′|βCβ([0,τ ];R) ≤ ‖α
′K3‖C([0,τ ];L(X)) < 1, (3.31)

τβ|α′|Cβ([0,T ];R)‖K3‖C([0,T ];L(X)) + ‖α′‖C([0,T ];R)|K3|Cβ([0,T ];L(X)) < 1. (3.32)

First we want now to prove that the linear operator

Mζ(t) = α′(t)K3(t)ζ(α(t)), t ∈ [0, T ], (3.33)

maps C([0, τ ];X) into itself and satisfies, for ζ ∈ C([0, τ ];X),

‖Mζ(t)‖L(X) ≤ ‖α′K3‖C([0,τ ];L(X))‖ζ‖C([0,t];X), t ∈ [0, τ1].

Consequently, since ‖α′K3‖C([0,τ ];L(X)) < 1 according to assumption (3.31), equation
(3.25) admits a unique solution ζ1 = (I −M)−1h in C([0, τ ];X) represented by (3.26).
Hence, according to Neumann’s theorem I −M is invertible from C([0, τ ];
L(X)) into itself. Moreover,

‖(Zh)(t)‖L(X) = ‖[(I −M)−1 − I]h(t)‖L(X) = ‖(I −M)−1Mh(t)‖L(X)

≤ ‖h‖C([0,t];X)

+∞∑
n=1

‖M‖nL(X) ≤ ‖h‖C([0,t];X)

+∞∑
n=1

‖α′K3‖nC([0,τ ];L(X))

=
‖α′K3‖C([0,τ ];L(X))

1− ‖α′K3‖C([0,τ ];L(X))

‖h‖C([0,t];X), t ∈ [0, τ ].

To show that such our local solution ζ can be extended to a global one, introduce, as
in [4], the finite sequence of positive real points defined by

τj+1 = α−1(τj), j = 1, . . . , n, (τn ≤ T < τn+1). (3.34)

We proceed by recurrence and assume to have shown that equation (3.25) admits a
solution ζj defined on the interval [τj, τj+1] for some j ∈ N, with τ0 = 0.
Consider then the following function ζj+1 defined by

ζj+1(t) = α′(t)K3(t)ζj(α(t)) + h(t), t ∈ [τj, τj+1].

So, we conclude that equation (4.30) admits a unique global solution ζj+1 ∈ C([τj, τj+1];Y )
such that ζj+1(τj) = ζj(τj). Consequently, the function

ζ(t) = ζj(t), t ∈ [τj−1, τj], j = 1, . . . , n, (3.35)
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solves the equation (3.25) in the interval [0, T ]. Moreover, the functions ζj satisfy the
recurrence estimates for j = 0, . . . , n− 1:

‖ζj+1‖C([τj ,τj+1];X) ≤ ‖α′K3‖C([τj ,τj+1];L(X))‖ζj‖C([τj−1,τj ];X)

+ ‖h‖C([τj ,τj+1];X). (3.36)

Since ‖ζ1‖C([0,τ ];X) ≤
[
1− ‖α′K3‖C([0,τ ];L(X))

]−1
, from (3.37), we deduce the estimate

‖ζj+1‖C([τj ,τj+1];X) ≤
[
1− ‖α′K3‖C([0,τ ];L(X))

]−1 j∏
i=0

‖α′K3‖C([τi,τi+1];L(X))

+

j∑
i=1

‖h‖C([τi,τi+1];X)

j∏
k=i+1

‖α′K3‖C([τk,τk+1];L(X)), j = 0, . . . , n− 1,

where
∏j

k=j+1 · · · = 1, j = 0, . . . , n− 1.
We have so proved that ζ satisfies the estimate

‖ζ‖C([0,T ];X) ≤ J2(α
′K3)‖h‖C([0,T ];X),

for some positive constant J2(α
′K3) depending on the norm ‖α′K3‖C([0,τ ];L(X)), only.

Then we want to prove that M maps Cβ([0, T ];X) into itself. For this task we need
the following estimates for all t1, t2 ∈ [0, τ ], t1 ≤ t2 and τ ∈ (0, T ], (cf. (C1)):

|α′(t2)− α′(t1)| ≤ |α′|Cβ([0,t])|t2 − t1|β, (3.37)

‖ζ ◦ α(t2)− ζ ◦ α(t1)‖ ≤ |ζ|Cβ([0,t];X)|α(t2)− α(t1)|β

≤ |ζ|Cβ([0,t];X)|α′|βC([0,t])|t2 − t1|
β, (3.38)

‖Kj,0(t2, α(t2))−Kj,0(t1, α(t1))‖L(X)

≤ ‖Kj,0‖C1,δ([0,t];L(X))

[
|t2 − t1|+ |α(t2)− α(t1)|δ

]
≤ ‖Kj,0‖C1,δ([0,t];L(X))|t2 − t1|δ

[
|t2 − t1|1−δ + ‖α′‖δC([0,T ])

]
≤ ‖Kj,0‖C1,δ([0,t];L(X))|t2 − t1|βτ δ−β

[
τ 1−δ + ‖α′‖δC([0,T ])

]
, j = 1, 2, (3.39)

‖[L0(t2) +K2,0(t2, t2)]
−1 − [L0(t1) +K2,0(t1, t1)]

−1‖L(X)

≤ ‖L0(t2)− L0(t1) +K2,0(t2, t2)−K2,0(t1, t1)‖L(X)

×
2∏
j=1

‖[L0(tj) +K2,0(tj, tj)]
−1‖L(X)

≤ µ−21 |t2 − t1|δ
[
τ 1−δ‖L0‖C1([0,T ];L(X)) + ‖K̃2,0‖Cδ([0,T ];L(X))

]
≤ µ−21 |t2 − t1|βτ δ−β

[
τ 1−δ‖L0‖C1([0,T ];L(X)) + ‖K̃2,0‖Cδ([0,T ];L(X))

]
, (3.40)

where K̃2,0(t) = K2,0(t, t), t ∈ [0, T ].
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Consequently, from (3.41) and definition (3.17) we deduce the following estimate
for all pair t1, t2 ∈ [0, τ ]:

‖K3(t2)−K3(t1)‖L(X) ≤ |t2 − t1|βτ δ−βJ2(K1,0, K2,0, L0, T ), (3.41)

J2 being a functional continuous depending on T and the norms
‖Kj,0‖C1,δ(ωj(T );L(X)), j = 1, 2, and ‖L0‖C1([0,T ];L(X)).

Assume now h(0) = 0, so that ζ(0) = h(0) = 0. Hence, from definition (3.34) we easily
deduce the following estimates, holding for all t ∈ [0, τ ]:

|Mζ|Cβ([0,t];L(X)) ≤ ‖α′K3‖C([0,τ ];L(X))|ζ ◦ α|Cβ([0,t];X)

+ |α′K3|Cβ([0,t];L(X))‖ζ‖C([0,t];X) ≤ ‖α′K3‖C([0,τ ];L(X))|α′|βC([0,T ];R)|ζ|Cβ([0,t];X)

+ ‖ζ‖C([0,t];X)

[
|α′|Cβ([0,T ];R)‖K3‖C([0,τ ];L(X)) + ‖α′‖C([0,τ ];R)|K3|Cβ([0,τ ];L(X))

]
≤ ‖α′K3‖C([0,τ ];L(X))|α′|βC([0,T ];R)|ζ|Cβ([0,t];X) + tβ|ζ|Cβ([0,t];X)

×
[
|α′|Cβ([0,T ];R)‖K3‖C([0,T ];L(X)) + ‖α′‖C([0,T ];R)|K3|Cβ([0,T ];L(X))

]
. (3.42)

Finally, setting t ∈ [0, τ ], from (3.42) and (3.43) we deduce the following estimate for
M :

‖Mζ‖Cβ([0,τ ];L(X)) ≤ ‖ζ‖Cβ([0,τ ];X) max
{
‖α′K3‖C([0,τ ];L(X))|α′|βCβ([0,τ ];R),

τβ|α′|Cβ([0,T ];R)‖K3‖C([0,T ];L(X)) + ‖α′‖C([0,T ];R)|K3|Cβ([0,T ];L(X))

}
=: ‖ζ‖Cβ([0,t];X)J1(K3, τ), t ∈ [0, τ ]. (3.43)

Observe now that, according to inequalities (3.31) and (3.33), for any τ ∈ (0, τ0] we have
J1(K3, τ) < 1. Consequently, the linear operator I−M maps continuously Cβ([0, τ ];X)
into itself and is invertible in Cβ([0, τ ];L(X)) for all τ ∈ [0, τ0]. Moreover the following
estimate holds true for all τ ∈ [0, τ0]:

‖Z‖L(Cβ([0,τ ];L(X)) = ‖(I −M)−1 − I‖L(Cβ([0,t];L(X))

≤ J1(K3, τ)
[
1− J1(K3, τ)

]−1
.

Consequently, the linear operator I−M maps continuously Cβ([0, τ ];X) into itself and
is invertible in Cβ([0, τ ];L(X)) for any τ ∈ (0, τ0]. Therefore ζ1 ∈ Cβ([0, τ ];X) and
satisfies the estimate

‖ζ1‖Cβ([τ0,τ1];X) ≤
[
1− J1(K3, T )

]−1
.

Reasoning as in the first part of this proof we conclude that each function ζj, j =
1, . . . , n, defined above belongs to Cβ([τj, τj+1];X) and satisfies the equality ζj+1(τj) =
ζj(τj) as well as the following recurrence estimates for j = 1, . . . , n− 1:

‖ζj+1‖Cβ([τj ,τj+1];X) ≤ ‖α′K3‖Cβ([τj ,τj+1];L(X))‖ζj‖Cβ([τj−1,τj ];X)
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+ ‖h‖Cβ([τj ,τj+1];X).

Since ‖ζ1‖Cβ([0,τ ];X) ≤ J1(K3, τ), from (3.37), we deduce the estimate

‖ζj+1‖Cβ([τj ,τj+1];X) ≤ J1(K3, τ)

j∏
i=0

‖α′K3‖Cβ([τi,τi+1];L(X))

+

j∑
i=1

‖h‖Cβ([τi,τi+1];X)

j∏
k=i+1

‖α′K3‖Cβ([τk,τk+1];L(X)), j = 1, . . . , n− 1.

We have so proved, when h(0) = 0, that ζ defined by (3.36) satisfies the estimate

‖ζ‖Cβ([0,T ]:X) ≤ J3(α
′, K3, T, τ)‖h‖Cβ([0,T ];X),

for some positive constant J3(α
′, K3, T, τ) depending on (T, τ) and the norms ‖α′‖Cβ([0,T ]),

‖K3‖Cβ([0,T ];L(X)), only.
We now consider the case h(0) 6= 0. Introducing the function

z(t) = ζ(t)− h(0).

It immediate to check that z solves the problem

z(t)− α′(t)K3(t)z(α(t)) = h̃(t), t ∈ [0, T ],

where h̃ is defined by (3.27).

Since h̃(0) = 0 (cf. (3.11)), we conclude that z belongs to Cβ([0, T ] : X) and satisfies
the estimate

‖z‖Cβ([0,T ]:X) ≤ J3(α
′, K3, T, τ)‖h̃‖Cβ([0,T ];X),

Moreover, z admits the representation

z(t) = (I −M)−1h̃(t) = h̃(t) + Z(h̃)(t), t ∈ [0, T ].

This concludes the proof.

4 Solving the abstract integro-differential Cauchy

problem (3.23), (3.24)

First we set

h(t) = g(t) +K4(t)u(t) + L1u(α(t))− L2u(t)− L3u(t), t ∈ [0, T ], (4.1)

where, for all t ∈ [0, T ], we have set

L1(t) = α′(t)K5(t), (4.2)

L2u(t) =

∫ α(t)

0

[
K6(t, s)u

′(s) +K8(t, s)u(s)
]
ds, (4.3)
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L3u(t) =

∫ t

α(t)

[
K7(t, s)u

′(s) +K9(t, s)u(s)
]
ds. (4.4)

We can now rewrite problem (3.23), (3.24) in the form

u′(t)− α′(t)K3(t)u
′(α(t)) = h(t), t ∈ [0, T ], (4.5)

u(0) = u0 ∈ N(L0(0)) ∩ Y, (4.6)

Observe now that

h(0) = g(0) +K4(0)u0 + α′(0)K5(0)u0, (4.7)

Define then

h̃(t) = α′(t)K3(t)h(0) + h(t)− h(0) = α′(t)K3(t)h(0) + g(t)− g(0)

+K4(t)[u(t)− u(0)] + L1[u(α(t))− u(0)]− L2u(t)− L3u(t), (4.8)

for any t ∈ [0, T ]. From (4.5), (4.7), (4.8) we deduce that u solves the Cauchy problem

u′(t) = h(0) + (I −M)−1h̃(t) = h(0) + (I −M)−1(α′K3h(0))(t)

+ (I −M)−1(g − g(0))(t) + (I −M)−1(K4(u− u(0))(t)

+ (I −M)−1(L1((u ◦ α)− u(0)))(t))− (I −M)−1(L2u)(t)

− (I −M)−1(L3u)(t), t ∈ [0, T ], (4.9)

u(0) = u0 ∈ N(L0(0)) ∩ Y. (4.10)

Setting t = 0 in equation (4.5) and using the latter condition in (3.11), we easily
compute

u′(0) = h(0). (4.11)

Introduce now the new unknown defined by

v(t) = u(t)− u0, t ∈ [0, T ] =⇒ v(0) = 0, v′(0) = h(0). (4.12)

Therefore, owing to Theorem 3.2 and the representation formula (3.26), via the identity
(I −M)−1(K4v)(t) = (K4v)(t) + Z(K4v)(α(t)), problem (4.5), (4.6) is equivalent to
the following

v′(t)−K4(t)v(t) = g̃(t) + Z(K4v)(α(t)) + (I −M)−1(L1(v ◦ α))(t)

− (I −M)−1(L2v)(t)− (I −M)−1(L3v)(t), t ∈ [0, T ], (4.13)

v(0) = 0. (4.14)

The family of operators {K4(t)}t∈[0,T ] is assumed to satisfy the following assumptions:
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(H1) the domain of K4(t) is independent of t ∈ [0, T ], its spectrum contains the set
Σφ ∪ {0}, where

Σφ = {λ ∈ C : |arg λ| ≤ φ}, φ ∈ (π/2, π); (4.15)

(H2) the following inequalities holds true:

‖[λ−K4(t)]
−1‖L(X) ≤ c0|λ|−1, λ ∈ Σφ, t ∈ [0, T ], (4.16)

‖K4(t)K4(0)−1 −K4(t)K4(0)−1‖L(X) ≤ c2|t2 − t1|β, 0 ≤ t1 ≤ t2 ≤ T. (4.17)

for some positive constants c0 and c2,

In particular, from (4.17) it follows that K4(t)K4(0)−1 is uniformly bounded in L(X)
with respect to t ∈ [0, T ] as well as

‖
[
K4(t2)−K4(t1)

]
K4(t1)

−1‖L(X) ≤ c2|t2 − t1|β, 0 ≤ t1 ≤ t2 ≤ T,

for some positive constants c2 (cf. formula (5.5) in [8]).
Then the following estimates hold true:

‖etK4(s)‖L(X) ≤ c1e
tλ0 ≤ c1, ‖etK4(s)‖L(X) ≤ c2t

−1, s, t ∈ [0, T ].

for some constants c0 and c1.
We have set here

g̃(t) = (I −M)−1(α′K3h(0))(t) + (I −M)−1(g − g(0))(t)

− (I −M)−1(L4(u0, h(0))(t)− (I −M)−1(L5(u0, h(0))(t), t ∈ [0, T ], (4.18)

L4(u0, h(0))(t) =

∫ α(t)

0

[
K6(t, s)h(0) +K8(t, s)u0

]
ds, t ∈ [0, T ], (4.19)

L5(u0, h(0))(t) =

∫ t

α(t)

[
K7(t, s)h(0) +K9(t, s)u0

]
ds, t ∈ [0, T ]. (4.20)

Observe now that from our latter assumption in (3.11), the formula [(I−M)−1l](0) = 0,
if l(0) = 0, and definitions (4.18)-(4.20), we get

g̃(0) = 0.

4.1 Showing that g̃ ∈ Cβ([0, T ];X)

Then we need to estimate Lju, j = 1, . . . , 5. For this task we need the following lemma.

Lemma 4.1. Let Hj ∈ Cβ,0(ωj(T );L(X1;X2)), j = 1, 2, X1 and X2 being two Banach
spaces. Then the linear operators

L6f(t) =

∫ α(t)

0

H1(t, s)f(s) ds, L7f(t) =

∫ t

α(t)

H2(t, s)f(s) ds, t ∈ [0, T ], (4.21)
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map C([0, T ];X1) continuously into Cβ([0, T ];X2) and satisfy the estimates

‖L5+jf‖Cβ([0,τ ];X2) ≤ J3+j(Hj, τ,X1;X2)‖f‖C([0,τ ];X1), τ ∈ (0, T ], j = 1, 2,

where

J4(H1, τ,X1;X2) =
(
τ 1−β + τ

)
‖α′‖C([0,T ];R)‖H1‖Cβ,0(ωj(τ);L(X1;X2))

,

J5(H2, τ,X1;X2) =
{
τ 1−β

(
1 + ‖α′‖C([0,T ];R)

)
+ sup

t∈[0,τ ]

[
t− α(t)]

}
× ‖H2‖Cβ,0(ωj(τ);L(X1;X2))

.

Proof. We limit ourselves with dealing with operator L7, since the result for L6 can be
derived analogously.
Let (t1, t2) be a pair such that 0 ≤ t1 ≤ t2 ≤ T . It suffices to consider the two cases
α(t2) ≤ t1 and t1 < α(t2) and to notice that the following formulae hold

L7f(t2)− L7f(t1) =

∫ t2

t1

H2(t2, s)f(s) ds

+

∫ t1

α(t2)

[H2(t2, s)−H2(t1, s)]f(s) ds−
∫ α(t2)

α(t1)

H2(t1, s)f(s) ds, if α(t2) ≤ t1(≤ t2),

(4.22)

L7f(t2)− L7f(t1) =

∫ t2

t1

H2(t2, s)f(s) ds

+

∫ t1

α(t1)

[H2(t2, s)−H2(t1, s)]f(s) ds−
∫ α(t2)

α(t1)

H2(t2, s)f(s) ds, if t1 < α(t2)(≤ t2).

(4.23)

The assertion easily follows from formulae (4.21), (4.22), (4.23).

Corollary 4.1. The linear operators L6 and L7 defined by (4.19) and (4.20) satisfy
the following estimates:

‖L6(u0, h(0))‖Cβ([0,τ ];X) ≤ J4(K6, τ,X,X)‖h(0)‖+ J4(K8, τ, Y,X)‖u0‖Y ,

‖L7(u0, h(0))‖Cβ([0,τ ];X) ≤ J5(K7, τ,X,X)‖h(0)‖+ J5(K9, τ, Y,X)‖u0‖Y .
Proof. It immediately follows from Lemma 4.1.

By virtue of Theorem 3.2 and recalling that α′(0)K3(0)h(0) = 0 (cf. (3.11)), even
though h(0) 6= 0, we can now estimate g̃ in Cβ([0, T ];X) (cf. (4.18));

‖g̃‖Cβ([0,τ ];X) ≤ [1− J1(K3, τ0)]
−1
{
‖α′K3‖Cβ([0,τ ];X)‖h(0)‖+ ‖g − g(0)‖Cβ([0,τ ];X)

+
2∑
j=1

[
J6(K5+j, τ,X,X)‖h(0)‖+ J6(K7+j, τ, Y,X)‖u0‖Y

]}
,

where

J6(K, τ,X1, X2) = J4(K, τ,X1, X2) + J5(K, τ,X1, X2).
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4.2 Solving the Cauchy problem

By virtue of theorem 6.1.3 in [7] we deduce that the solution w to problem (4.13),
(4.14), with Z = L1 = L2 = L3 = O, belongs to

Zβ(τ) = C1+β([0, τ ];X) ∩ Cβ([0, τ ];Y ), τ ∈ (0, T ],

and satisfies the estimate

‖w‖Zβ(τ) ≤ C(T )‖g̃‖Cβ([0,τ ];X), τ ∈ (0, T ],

the positive constant C(T ) being independent of τ ∈ (0, T ].
Then we notice that problem (4.13), (4.14) is equivalent to the integral equation

v(t) = w(t) +

∫ t

0

G(t, s)Z(K4(v ◦ α))(s) ds+

∫ t

0

G(t, s)(I −M)−1(L1(v ◦ α))(s) ds

+

∫ t

0

G(t, s)(I −M)−1(L2v)(s) ds+

∫ t

0

G(t, s)(I −M)−1(L3v)(s) ds, (4.24)

for any t ∈ [0, T ], where G denotes the evolution operator associated with the family
of operators {K4(t)}t∈[0,T ] (cf. corollary 6.1.8 in [7]) and

w(t) =

∫ t

0

G(t, s)(I −M)−1g̃(s) ds, t ∈ [0, T ].

We recall that the kernel G satisfies the estimates

‖G(t, s)‖L(X) ≤ C0, ‖DtG(t, s)‖L(X) + ‖K4(t)G(t, s)‖L(X) ≤ C0(t− s)−1,

for any 0 < s < t < T and some positive constant C0 independent of (t, s) ∈ ω1(T ) ∪
ω2(T ).
Finally, observe that, owing to definition (3.18), properties (3.9), (3.12), and inequality
(3.41), it is not difficult to show that K4 belongs to Cβ([0, T ];L(Y ;X)). More precisely,

setting K̃2,j(t) = K2,j(t, t), t ∈ [0, T ] and j = 0, 1, we have

‖K4‖Cβ([0,T ];L(Y ;X)) ≤ ‖[L0 + K̃2,0]
−1‖Cβ([0,T ];L(X))

×
[
‖L′0‖Cβ([0,T ];L(Y ;X)) + ‖K̃2,1‖Cβ([0,T ];L(Y ;X))

]
.

Then we need the following theorem.

Theorem 4.1. The linear operator

Gf(t) =

∫ t

0

G(t, s)f(s) ds, t ∈ [0, T ], (4.25)

maps Cβ
0 ([0, τ ];X) = {f ∈ Cβ([0, τ ];X) : f(0) = 0} continuously into Zβ(τ) for all

β ∈ (0, 1) and τ ∈ (0, T ], and satisfies the estimate

‖Gf‖Zβ(τ) ≤ C(β, T )‖f‖Cβ([0,τ ];X), τ ∈ (0, T ], (4.26)

for some positive constant C(β, T ) independent of τ ∈ (0, T ].
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For reader’s convenience a sketch of the proof will be given in Appendix.

To show that equation (4.24) is solvable in Zβ(τ) for small enough τ it suffices to apply
the contraction mapping principle. For this purpose we observe that from (3.44), (4.26)
and Corollary 4.2, for τ satisfying (3.29), we easily deduce the following estimates (cf.
(4.3), (4.4)):

‖G(I −M)−1L1+jv‖Zβ(τ) ≤ C(β, T )‖(I −M)−1L1+jv‖Cβ([0,τ ];X)

≤ J1(K3, τ)‖L1+jv‖C([0,τ ];X) ≤ J1(K3, τ)J6+j(τ)‖v‖Zβ(α2−j(τ)), j = 1, 2, (4.27)

where

J7(τ) = J1(K3, τ)
[
J4(K6, τ,X,X)‖h(0)‖+ J4(K8, τ, Y,X)‖u0‖Y

]
,

J8(τ) = J1(K3, τ)
[
J5(K7, τ,X,X)‖h(0)‖+ J5(K9, τ, Y,X)‖u0‖Y

]
,

while from Theorems 3.1 and definition (3.19) we get

‖G(I −M)−1L1(v ◦ α)‖Zβ(τ) ≤ C(β, T )‖(I −M)−1L1(v ◦ α)‖Cβ([0,τ ];X)

≤ C(β, T )J1(K3, τ)‖α′K5(v ◦ α)‖Cβ([0,τ ];L(X)

≤ C(β, T )J1(K3, τ)
[
‖α′K5‖Cβ([0,τ ];L(X))‖v‖C([0,α(τ)];X)

+ ‖α′K5‖C([0,τ ];L(X))‖α′‖βC([0,α(τ)];R)|v|Cβ([0,α(τ)];X)

]
≤ C(β, T )J1(K3, τ) max

{
‖α′K5‖Cβ([0,τ ];L(X)) + ‖α′K5‖C([0,τ ];L(X))

× ‖α′‖βC([0,α(τ)];R)

}
‖v‖Cβ([0,α(τ)];X).

Moreover, since ‖α′‖C([0,τ ];R) < 1 (cf (3.11)), we deduce

‖G
[
Z(K4(v) ◦ α]‖Zβ(τ) ≤ C(β, T )‖Z(K4(v) ◦ α‖Cβ([0,τ ];X)

≤ C(β, T )
[
‖Z(K4v)‖C([0,α(τ)];X) + |Z(K4v)|Cβ([0,α(τ)];X)‖α′‖βC([0,τ ];R)

]
≤ C(β, T )‖Z(K4u)‖Cβ([0,α(τ)];X) ≤ C(β, T )

J1(K3, τ)(α(τ))

1− J1(K3, τ)(α(τ))
‖K4v‖Cβ([0,α(τ)];X)

≤ C(β, T )
J1(K3, τ)(α(τ))

1− J1(K3, τ)(α(τ))
‖v‖Zβ([0,α(τ)];X).

We choose now τ ∈ (0, τ0] so as to satisfy the inequality

C(β, T )
J1(K3, τ)(α(τ))

1− J1(K3, τ)(α(τ))
⇐⇒ J1(K3, τ)(α(τ)) <

[
1 + C(β, T )

]−1
. (4.28)

We now observe that, according to (3.11),

lim
τ→0+

J1(K3, τ)(α(τ)) = α′(0)1+β‖K3(0)‖L(X) = 0. (4.29)
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Consequently, inequality (4.28) is solvable.
Finally, from (4.27)-(4.28) we can conclude that there exists τ1 ∈ (0, T ] such that the
operator

I − G[Z(K4(· ◦ α)) + (I −M)−1(L1 + L2 + L3)]

is invertible from Zβ([0, τ ];X) into itself for any τ ∈ (0, τ1], since, owing to the previous
estimate (4.29), its norm tends to 0 as τ → 0+. Consequently, we easily deduce that
equation (4.24) admits a unique solution v ∈ Zβ([0, τ ];X) for any τ ∈ (0, τ1]. Such
a solution continuously depends on w with respect to the metrics of the same space.
Indeed, it satisfies the following estimate

‖v‖Zβ(τ) ≤ C(T )
{
‖u0‖Y + ‖f ′‖Cβ([0,τ ];X) + ‖H(u0, f)‖(Y ;X)β,∞

}
, τ ∈ (0, τ1],

where

H(u0, f) = [L0(0) +K2,0(0, 0)]−1
{
L′0(0) +K2,1(0, 0) + α′(0)[K2,0(0, 0)−K1,0(0, 0)]

}
u0

+ f ′(0),

which shows how the solution v depends on the data (u0, f).
To show that such our local solution can be extended to a global one, introduce, as in
(3.35), the finite sequence of positive real points defined by

τj+1 = α−1(τj), j = 1, . . . , n, (τn ≤ T < τn+1).

We proceed by recurrence and assume to have shown that equation (4.24) admits a
solution vj defined in the interval [0, τj]. Consider then the following function ζj+1 in
the interval [τj, τj+1]:

ζj+1(t) = vj(τj) +

∫ t

τj

α′(s)G(t, s)
[
K2(s, α(s))v′j(α(s)) +K4(s, α(s))vj(α(s))

]
ds

+

∫ t

τj

G(t, s) ds

∫ τj

α(s)

[DtK2(s, σ)v′j(σ) +DtK4(s, σ)vj(σ)] dσ

+

∫ t

τj

G(t, s) ds

∫ t

τj

[DtK2(s, σ)ζ ′j+1(σ) +DtK4(s, σ)ζj+1(σ)] dσ

+g(t). (4.30)

According to our assumptions (3.5)-(3.12) we conclude that equation (4.30) admits a
unique global solution ζj+1 ∈ C([τj, τj+1];Y ) such that ζj+1(τj) = ζj(τj). Consequently,
the function

vj+1(t) =

{
vj(t), t ∈ [0, τj],

ζj+1(t), t ∈ [τj, τj+1],

solves problem (4.24) in the interval [0, τj+1] for any j ∈ {1, . . . , n}. Hence vn is our
global solution in [0, T ] satisfying the estimate

‖v‖Zβ(T ) ≤ C(T )
{
‖u0‖Y + ‖f ′‖Cβ([0,T ];X) + ‖H(u0, f)‖(Y ;X)β,∞

}
. �
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5 Some applications to integro-differential problems

The elliptic problem. Consider the integro-differential boundary value problem∫ α(t)

0

{
−

n∑
i,j=1

Dxi [a
(1)
i,j (t, s, x)Dxju(s, x)] + a

(1)
0,0(t, s, x)u(s, x)

}
ds

+

∫ t

α(t)

{
−

n∑
i,j=1

Dxi [a
(2)
i,j (t, s, x)Dxju(s, x)] + a

(2)
0,0(t, s, x)u(s, x)

}
ds = f(t, x),

(t, x) ∈ [0, T ]× Ω, (5.1)

u(t, x) = 0, (t, x) ∈ [0, T ]× ∂Ω, (5.2)

where function α belongs to C1([0, T ],R) and enjoys the properties (1.3), (1.4).
Further assume (cf. (1.4), (1.5))

n∑
i,j=1

a
(2)
i,j (t, t, x)ξiξj ≥ µ|ξ|2, t ∈ [0, T ], x ∈ Ω, ξ ∈ Rn for some µ > 0, (5.3)

a
(2)
0,0(t, t, x) ≥ 0, (t, x) ∈ [0, T ]× Ω, (5.4)

a
(k)
i,j ∈ C1(ωk(T );W 1,∞(Ω)), i, j = 1, . . . , n, a

(k)
0,0 ∈ C1(ω2(T );L∞(Ω)), k = 1, 2,

(5.5)

Dta
(k)
i,j ∈ C(ωk(T );W 1,∞(Ω)), i, j = 1, . . . , n, k = 1, 2. (5.6)

Then we assume that either of the following conditions holds true:

α′(0) = 0, (5.7)

or there exists a λ ∈ [0, 2] such that

a
(1)
i,j (0, 0, x) = λa

(2)
i,j (0, 0, x), a

(1)
0,0(0, 0, x) = λa

(2)
0,0(0, 0, x), i, j = 1, . . . , n. (5.8)

Finally, assume
f ∈ C1([0, T ];L2(Ω)), f(0, ·) = 0. (5.9)

Theorem 5.1. Under assumptions (5.3)-(5.9) the integro-differential problem (5.1)
admits a unique solution u ∈ C([0, T ];H1

0 (Ω) ∩H2(Ω)) continuously depending on the
datum f .

Proof. Set

Kj(t, s) = −
n∑

i,j=1

Dxi [a
(j)
i,j (t, s, x)Dxj ] + a

(j)
0,0(t, s, x), j = 1, 2.

Observe that (t, s) → Kj(t, s) ∈ C(ωj(T );L(Y,X)) where Y = H1
0 (Ω) ∩ H2(Ω) and

X = L2(Ω). Moreover, from well-known regularity results for elliptic boundary value
problems (cf. [9, Chapt. 4]), we deduce that K2(t, t) is invertible for any t ∈ [0, T ] and

‖K2(t, t)
−1‖L(X;Y ) ≤ C, t ∈ [0, T ].
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Consequently

t→ K2(t, t)
−1 ∈ C([0, T ];L(L2(Ω);H1

0 (Ω) ∩H2(Ω))).

Indeed, for all t, t0 ∈ [0, T ] we have

‖K2(t, t)
−1 −K2(t0, t0)

−1‖L(X;Y )

= ‖K2(t0, t0)
−1[K2(t, t)−K2(t0, t0)]K2(t, t)

−1‖L(X;Y )

≤ ‖K2(t0, t0)
−1‖L(X;Y )‖K2(t, t)

−1‖L(X;Y )‖K2(t, t)−K2(t0, t0)‖L(Y ;X).

Finally, note that DtKj ∈ C(ωj(T );L(H2(Ω) ∩H1
0 (Ω);L2(Ω))), j = 1, 2, according to

assumption (5.6). Moreover, condition (2.4) is trivially satisfied if α′(0) = 0, while
under (5.8) we get

‖K2(0, 0)−1[K2(0, 0)−K1(0, 0)]‖L(Y ;X) =‖K2(0, 0)−1(1− λ)K2(0, 0)‖L(Y ;X)

≤|1− λ| ≤ 1.

Since 0 < α′(0) < 1, condition (2.4) is satisfied also in this case.
This concludes the proof.

The parabolic problem. Set α0(t) = 0, α1(t) = α(t), α2(t) = t, t ∈ [0, T ].
Consider the integro-differential initial and boundary value problem

`0(t, x)u(t, x) +
2∑

h=1

∫ αh(t)

αh−1(t)

{
ρh(t, s, x)Dsu(s, x)−

d∑
i,j=1

ahi,j(t, s, x)DxiDxju(s, x)

−
d∑
j=1

ah0,j(t, s, x)Dxju(s, x)− ah0,0(t, s, x)u(s, x)

}
ds = f(t, x),

(t, x) ∈ [0, T ]× Ω, (5.10)

u(0, x) = u0(x), x ∈ Ω, (5.11)

B(x,Dx)u(t, x) = 0, (t, x) ∈ [0, T ]× ∂Ω. (5.12)

We make the following assumptions for some δ ∈ (0, 1) and some positive constants µ1

and µ2:

ρh ∈ C1+δ,0(ωh(T );R), h = 1, 2, (5.13)

`0 ∈ C1+δ,0(ωh(T );R), m(Ω0) ≥ 0, Ω0 = {x ∈ Ω : `0(0, x) = 0}, (5.14)

|`0(t, x) + ρ2(t, t, x)| ≥ µ1, t ∈ [0, T ], x ∈ Ω, (5.15)

ah0,0, a
h
0,j, a

h
i,j, Dta

h
0,0, Dta

h
0,j, Dta

h
i,j ∈ Cδ,0(ωh(T );R),

i, j = 1, . . . , d, h = 1, 2, (5.16)

[`0(t, x) + ρ2(t, t, x)]−1
n∑

i,j=1

a2i,j(t, t, x)ξiξj ≥ µ2|ξ|2,
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(t, x, ξ) ∈ [0, T ]× Ω× Rn. (5.17)

As far as the linear differential operator B(x,Dx) =
∑N

j=1 dj(y)Dyk+d0(y) = 0, of order
not exceeding 1 and standing for Dirichlet or Neumann or Robin boundary conditions,
is concerned, we assume that, when B(x,Dx) 6= I, the coefficients dj ∈ C1(Ω), j =

0, . . . , N, satisfy the uniform non-tangentiality condition |
∑N

j=0 νj(y)dj(y)| ≥ µ3 > 0
for all y ∈ ∂Ω and some positive constant µ3 (cf. [7, Chapter 3]), ν standing for the
unit exterior normal to ∂Ω, as well as the inequality d0(y) ≥ 0 for all y ∈ ∂Ω.

Remark 1. We could also deal with any 2m-th order linear differential elliptic operator
A =

∑
|α|≤2m aα(y)Dα

y satisfying conditions (4.2.2) and (4.2.3) in [7, p. 112]) and
endowed with m boundary conditions related to m boundary linear differential elliptic
operators satisfying conditions (4.2.5), (4.2.6) in [7, pp. 112-113]. In this case Ω stands
for a bounded open set in RN with a C2m-boundary.

Functions α and f and u0 satisfy, respectively, properties (4.3), (3.6) and

f ∈ C1+β([0, T ];Lp(Ω)), f(0, ·) = 0, u0 ∈ W 1,p
0 (Ω) ∩W 2,p(Ω), u0 = 0 in Ω \ Ω0,

for some p ∈ (1,+∞) and β ∈ (0, 1) \ {1/(2p)}.
Finally, we assume

[
`0(0, ·) + ρ2(0, 0, ·)

]−1[
Dt`0(0, ·) +

n∑
i,j=1

a2i,j(0, 0, ·)DxiDxju0

+
n∑
j=1

a20,j(0, 0, ·)Dxju0 + a20,0(0, 0, ·)u0
]

+α′(0)[ρ2(0, 0, ·)− ρ1(0, 0, ·)] +Dtf(0, ·) ∈ W2β,p(Ω), β ∈ (0, δ), (5.18)

where the intermediate space W2β,p(Ω), β 6= 1/(2p), is defined (cf. [18, p. 420] by

W2β,p(Ω) =

{
W 2β,p(Ω), 0 < α < 1/(2p),

{ϕ ∈ W 2β,p(Ω) : ϕ = 0 on ∂Ω}, 1/(2p) < β < 1.

We can state the result of this subsection.

Theorem 5.2. Under assumptions (3.5), (5.13)-(5.18) problem (5.10)-(5.12) admits
a unique solution u ∈ C1+β([0, T ];Lp(Ω))∩Cβ([0, T ];W 1,p

0 (Ω)∩W 2,p(Ω)) continuously
depending on the data (f, u0) with respect to the metrics pointed out.

Proof. First we introduce the linear operators

Kh,0(t, s)u(x) = ρh(t, s, x)u(x),

Kh,1(t, s)u(x) =
n∑

i,j=1

ahi,j(t, s, x)DxiDxju(x) +
n∑
j=1

ah0,j(t, s, x)Dxju(x)
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+ah0,0(t, s, x)u(x).

We observe that

Kh,0, DtKh,0 ∈ Cδ(ωh(T );L(X)), Kh,1, DtKh,1 ∈ Cδ(ωh(T );L(Y ;X)),

where the open sets ωh(T ) are defined by (1.4) and

Y = W 1,p
0 (Ω) ∩W 2,p(Ω), X = Lp(Ω).

We observe that, according to our assumptions on `0, the kernel of the linear multipli-
cation operator defined by `0(0, ·) coincides with the vector space

N(L0(0)) = {w ∈ Y : w(x) = 0, x ∈ Ω \ Ω0}, Ω0 = {x ∈ Ω : `0(0, x) = 0}.

In particular, we observe that

[`0(t, x)I +K2,0(t, t, x)]u(x) = [`0(t, x) + ρ2(t, t, x)]u(x), t ∈ [0, T ], x ∈ Ω,

is continuously invertible from Cβ([0, τ ];X) into itself for any τ ∈ (0, T ]. Then the
linear operators K3(t) ∈ L(X) and K4(t) ∈ L(Y ;X) are defined by

K3(t)u(x) = [`0(t, x) + ρ2(t, t, x)]−1(ρ2 − ρ1)(t, α(t), x)u(x),

K4(t)u(x) = [`0(t, x) + ρ2(t, t, x)]−1
[ n∑
i,j=1

a2i,j(t, t, x)DxiDxju(x)

+
n∑
j=1

a20,j(t, t, x)Dxju(x) + a20,0(t, t, x)u(x)
]
,

K5(t)u(x) = [`0(t, x) + ρ2(t, t, x)]−1[ρ2(t, t, α(t))− ρ1(t, t, α(t))].

We note that, according to (5.17), K4(t) is uniformly elliptic for all t ∈ [0, T ] with
positive constant µ2. As a consequence, the family of operators {K4(t)}t∈[0,T ] satisfies
the assumptions of theorem 6.1.3 in [7]. Therefore it generates the evolution operators
G(t, s), 0 ≤ s ≤ t ≤ T .
Furthermore, the properties H1 and H2 in Section 3 involving the family K4(t)t∈[0,T ]
are satisfied according to assumptions (5.13)-(5.17) and the results on pp. 140-144 in
[10].
Finally, condition (3.13) simplifies to (5.18).

Affiliation. A. Lorenzi is a member of G.N.A.M.P.A. of the Italian Istituto
Nazionale di Alta Matematica (I.N.d.A.M).

A Appendix

Here we outline the proof of Theorem 3.4. We recall that the family of operators
{K4(t)}t∈[0,T ] is assumed to satisfy properties (4.15)-(4.17).
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We recall now that the evolution operator G admits the representation (cf. [7, Chapter
3])

G(t, s) = e(t−s)K4(t) +W (t, s), 0 ≤ s ≤ t ≤ T, W (t, t) = O, t ∈ [0, T ],

where

‖W (t, s)‖L(X) ≤ c3, ‖DtW (t, s)‖L(X) ≤ c4(t− s)−1+β, 0 ≤ s ≤ t ≤ T.

for some constants c3 and c4.
For any ε ∈ (0, 1), we consider the following formulae holding for all t ∈ [0, T ]:

Dt

∫ εt

0

G(t, s)f(s) ds = G(t, εt)f(εt) +

∫ εt

0

DtG(t, s)f(s) ds,

= G(t, εt)f(t) +G(t, εt)[f(εt)− f(t)] +

∫ εt

0

DtG(t, s)f(s) ds,∫ εt

0

DtG(t, s)f(s) ds =

∫ εt

0

DtG(t, s)[f(s)− f(t)] ds+

∫ εt

0

DtG(t, s)f(t) ds,∫ εt

0

DtG(t, s)f(t) ds = −
∫ εt

0

Ds[e
(t−s)K4(t)]f(t) ds+

∫ εt

0

DtW (t, s)f(t) ds

= −et(1−ε)K4(t)f(t) + etK4(t)f(t) +

∫ εt

0

DtW (t, s)f(t) ds

→ −f(t) + etK4(t)f(t) +

∫ t

0

DtW (t, s)f(t) ds, as ε→ 1− .

and

Dt

∫ εt

0

G(t, s)f(s) ds = G(t, εt)f(t) +G(t, εt)[f(εt)− f(t)] +

∫ εt

0

DtG(t, s)f(s) ds

→ etK4(t)f(t) +

∫ t

0

DtW (t, s)f(t) ds, t ∈ [0, T ], as ε→ 1−,

K4(t)

∫ εt

0

G(t, s)f(s) ds =

∫ εt

0

K4(t)G(t, s)f(s) ds =

∫ εt

0

DtG(t, s)f(s) ds

→ −f(t) + etK4(t)f(t) +

∫ t

0

DtW (t, s)f(t) ds, t ∈ [0, T ], as ε→ 1− . (A.1)

To derive the formulae involving t-increments, we need the unbounded curve γ(η),
|η| < φ, oriented from ∞e−iη to ∞eiη and defined by

γ(η) = {re−iη ∈ C : r ≥ 0} ∪ {reiη ∈ C : r ≥ 0}.

Then we observe that for any pair 0 ≤ t1 < t2 ≤ T we have

I1(t1, t2) := et2K4(t2) − et1K4(t1) =
1

2πi

∫
γ(η)

et1λ
{[
λ−K4(t2)

]−1 − [λ−K4(t1)
]−1}

dλ
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=
1

2πi

∫
γ(η)

et1λ
[
λ−K4(t2)

]−1{[
K4(t2)−K4(t1)

]
K4(t1)

−1}K4(t1)
[
λ−K4(t1)

]−1
dλ.

For any λ ∈ γ(η) we have Reλ ≤ 0, so that the following inequalities hold:

|et2λ − et1λ| =
∣∣∣ ∫ t2

t1

λeλs ds
∣∣∣ ≤ |λ|∫ t2

t1

esReλ ds ≤ |λ|(t2 − t1)β
[ ∫ t2

t1

esReλ/(1−β) ds
]1−β

≤ |λ|(t2 − t1)β
[ ∫ +∞

0

esReλ/(1−β) ds
]1−β

≤ (1− β)1−β|λ||Reλ|−1+β(t2 − t1)β

≤ C(β, η)|λ|β(t2 − t1)β, if λ ∈ γ(η).

Whence we deduce the estimates

‖I1(t1, t2)‖L(X) ≤
c0(1 + c0)

2π
|K|Cβ([0,T ];L(X))|t2 − t1|β

∫
λ0+γ(εt−1,η)

|λ|−1et1Reλ |dλ|

≤ c20(1 + c0)

2π
c5(ε, η)eTλ0|K|Cβ([0,T ];L(X))|t2 − t1|β =: c6|t2 − t1|β, t1, t2 ∈ [0, T ],

Consequently, if f ∈ Cβ
0 ([0, T ];X), we deduce

‖et2K4(t2)f(t2)− et1K4(t1)f(t1)‖ ≤ ‖et2K4(t2)‖L(X)‖f(t2)− f(t1)‖

+‖et2K4(t2) − et1K4(t1)‖L(X)‖f(t1)‖ ≤ |t2 − t1|β|f |Cβ([0,T ];X)

(
c0 + c6T

β
)
.

Finally, it is well-known that the integral involving DtW , e.g. in the last side in (5.7),
defines a function in Cβ([0, T ];X).
This concludes our task.
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