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Abstract The paper shows how we can reformulate the inverse problem, which is solved by

optimization method. The approach is demonstrated on four models of inverse problems. It is

shown that when the inverse problem is the coe�cient problem, the use of parallel computing

can reduce almost half of the time of the inverse problem's numerical solution calculating, as

solving direct and conjugate problems can be searched in parallel way. If the inverse problem is

linear (the unknown boundary condition or the right side of an equation are being looked for),

then the inverse problem can be reduced to the numerical solution of the moment problem,

for which all the necessary functions can be computed in advance by the known data of the

inverse problem. To illustrate the proposed approach, we represent the numerical solution of

the Cauchy problem for an elliptic equation on data obtained from the physical experiment.
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1 Introduction

In practice, quite often inverse problems are solved using the optimization method.
Gradient of the residual functional is sought by solving the conjugate problem (see,
e.g., [1, 2]). The computational complexity of this approach is that the computation of
the gradient requires solutions of direct and conjugate problems, the conjugate problem
can be solved only after the direct problem solution is found. Thus, a certain amount
of time is spent on one iteration of minimization process.

In this paper we proposed a reformulation of the original statement of the inverse
problem, which allows us to search for direct and conjugate problems solutions in paral-
lel way, which reduces the computation time. Since the article is partly methodological,
so the essence of the proposed approach is demonstrated on four models of the inverse
problem as follows:

• coe�cient hyperbolic inverse problem;

• retrospective inverse problem of heat conduction;

• the Cauchy problem for the Laplace equation that can be reduced to the inverse
problem of search for the unknown boundary condition;

• problem of determining the right side of the elliptic equation.
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Let us show, that in the �rst and the second cases we can achieve almost double gain
in the computation time for one iteration of the minimization and, consequently, for
the solution of inverse problems in general. In the third and the fourth cases let us
show, that the computation of the gradient of the residual functional does not require
direct and conjugate problems solution at all.

The idea of the proposed approach is related to the technique of constructing the
sensitivity operator (see, e.g., [6, 7]) and the technology of residual functional gradient's
output for the numerical solution of the inverse problem (see, e.g., [1]), but in these
publications the problem of reducing computation time was not considered.

2 Coe�cient hyperbolic inverse problem

2.1 The traditional way of solving the inverse problem

Let us consider the following statement of the inverse problem

1st inverse problem: Find the unknown function q(x), if it is known for the solution
of the direct problem

utt = uxx − qu, (x, t) ∈ {0 < x < T, x < t < 2T − x}, (1)

ux|x=0 = 0, t ∈ [0, 2T ], (2)

u|t=x = 1/2, x ∈ [0, T ], (3)

the following additional information

u|x=0 = f(t), t ∈ [0, 2T ]. (4)

This statement of the inverse problem is well understood, for example, in [5].
The numerical solving of the inverse problem (1)-(4) by using optimization method

assumes that the minimum of the residual functional is being sought:

J [q] =

2T∫
0

[u(0, t)− f(t)]2dt. (5)

The gradient of the residual functional (5) can be obtained in the following form

J ′[q](x) =

2T−x∫
x

u(x, τ)ψ(x, τ)dτ (6)

where the function ψ(x, τ) is the solution of conjugate problem

ψtt = ψxx − qψ, (x, t) ∈ {0 < x < T, x < t < 2T − x}, (7)

ψx|x=0 = 2[u(0, t)− f(t)], t ∈ [0, 2T ], (8)

ψ|t=2T−x = 0, x ∈ [0, T ]. (9)
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We believe that the technique of obtaining the gradient of the residual functional is
well known, so we omit the intermediate calculations. The description of this technique
with a simple example can be found in [1].

Thus, one iteration of the minimization of the residual functional (5) contains three
basic steps as follows:

1st step: solving of the direct problem (1)-(3);

2nd step: solving of the conjugate problem (7)-(9);

3d step: calculating of the gradient (6).

As we note, step 2 can not be done in parallel way with step 1, as there is func-
tion u(0, t) in the statement of the conjugate problem (7)-(9), which can be obtained
only after step 1. Solving of the direct and conjugate problems requires the same
computation time.

2.2 Transformation of the 1st inverse problem's statement

Let us consider the following statement of direct problems:

vtt = vxx − qv, (x, t) ∈ {0 < x < T, x < t < 2T − x}, (10)

vx|x=0 = α(t, νk), t ∈ [0, 2T ], k = 0, 1, 2, ..., (11)

v|t=2T−x = β, x ∈ [0, T ]. (12)

The di�erential operator of the equation (10) is conjugate to the di�erential operator
in (1), the function α(t, νk) and the constant β will be de�ned later, νk is a known
parameter, as it will be de�ned later.

To emphasize the function v(x, t) dependence on the parameter νk, where it will be
needed, we will write v(x, t; νk).

Let us take an integral of the identical equation

0 ≡
T∫

0

2T−ξ∫
ξ

(
utt − uxx + qu

)
v dτdξ −

T∫
0

2T−ξ∫
ξ

(
vtt − vxx + qv

)
u dτdξ

=

T∫
0

2T−ξ∫
ξ

(
∂

∂t

(
utv − vtu

)
− ∂

∂x

(
uxv − vxu

))
dτdξ

= −
T∫

0

(
d

dξ
[u(ξ, 2T − ξ)] v(ξ, 2T − ξ)− u(ξ, 2T − ξ)

d

dξ
[v(ξ, 2T − ξ)]

)
dξ

−
T∫

0

(
d

dξ
[u(ξ, ξ)] v(ξ, ξ)− u(ξ, ξ)

d

dξ
[v(ξ, ξ)]

)
dξ

+

2T∫
0

(
ux(0, τ)v(0, τ)− u(0, τ)vx(0, τ)

)
dτ.
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Hence, in view of (1)-(4), (10)-(12) the following par implies:

v(0, 0; νk) = 2

β · f(2T )−
2T∫
0

f(τ)α(τ, νk) dτ

 . (13)

Since the choice of the function α(t, νk) is in our hands, the integral in (13) can
be computed in advance. As a function α(t, νk), we can take, for example, cos(νkt),
where νk = kπ/T . Then the integral in (13) is the coe�cient fk of function expansion
f(t) in the Fourier series on the interval [0, 2T ]. The constant β in this case can be
arbitrary, however, if the boundary condition (3) would be di�erent, then we could get
a condition on the choice of β.

Thus, we have a series of statements of direct problems (10)-(12) and the relations
(13), depending on the parameter νk (k = 0, 1, ...), and hence we can formulate:

2nd inverse problem: Find the unknown function q(x), if there is the additional
information (13) for the solution of the direct problem (10)-(12). The inverse problem

(10)-(13) can be solved numerically using the minimization of the residual functional

Φ[q] =
∑
k

[v(0, 0; νk)− v0(νk)]
2, (14)

where

v0(νk) = 2

β · f(2T )−
2T∫
0

f(τ)α(τ, νk) dτ

 .

To �nd the gradient of the residual functional (14), we use the well-known techniques
(see, e.g., [1, 2]). We obtain

Φ′[q](x) =
∑
k

2T−x∫
x

v(x, τ ; νk)w(x, τ ; νk) dτ, (15)

where the functions w(x, t; νk) are the solutions of the conjugate problems

wtt = wxx − qw, (x, t) ∈ {0 < x < T, x < t < 2T − x},
wx|x=0 = 0, t ∈ [0, 2T ],

w|t=x = −2[v(0, 0; νk)− v0(νk)], x ∈ [0, T ].

It is easy to see that the function w(x, τ ; νk) can be represented as

w(x, τ ; νk) = −4[v(0, 0; νk)− v0(νk)] · u(x, t),
where u(x, t) is the solution of the starting direct problem (1)-(3).

So the gradient of the residual functional (14) can be written in the following form:

Φ′[q](x) =

2T−x∫
x

V (x, τ)u(x, τ) dτ, (16)

where
V (x, t) =

∑
k

2[v(0, 0, νk)− v0(νk)]v(x, t; νk).
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2.3 The conclusions of the transformation results

The functions α(t, νk) can be chosen as the basis functions on the interval [0, 2T ]. Thus,
we deal with the Fourier series for function f(t). When it is being solved numerically,
this Fourier series can be interrupted. The following reasons may serve this:

• The �rst elements of the Fourier series can describe the behavior of function f(t)
with good accuracy.

• With increasing index number the Fourier coe�cient tends to zero. Consequently,
in (13) value v(0, 0; νk) tends to a constant, and the variations of the coe�cients
with high index numbers have, practically, no in�uence on the behavior of the
residual functional (14).

• In practice, the function f(t) is known with some error. As the rule, the noise
has a high frequency component, so that the coe�cients corresponding to the
high-frequency harmonics are calculated with a great error, much greater than
the �rst coe�cients of the series. Consequently, they do not contain information
about the behavior of the function f(t).

Thus, for the numerical solution of the inverse problem we can limit ourselves to a
�nite set of functions α(t, νk) and parameters νk (k = 0, N). The number of elements
of the Fourier series can be chosen from the condition

2T∫
0

(
f(t)−

N∑
k=1

fkα(t, νk)

)2
dt = δ 2,

where δ is the error level, with what the values of function f(t) were measured.

The capabilities of modern programming languages and computers allow to compute
v(x, t; νk) (k = 0, N) and u(x, t) in a parallel way. Therefore, to make one iteration of
minimization of the residual functional (14), we need to do two basic steps:

1st step: solving of the direct problems (10)-(12) v(x, t; νk) (k = 0, N), and the
solution of the direct problem (1)-(3) u(x, t);

2nd step: calculating of the gradient (16).

Steps 1 and 3 in the case of solving the 1st inverse problem and the steps 1-2 in the
case of solving the 2nd inverse problem will require the same computation time, so we
obtain a double gain in the computation time for the implementation of one iteration
of the minimization process.

3 Retrospective inverse problem of heat conduction

3.1 The traditional way of solving the inverse problem

Let us assume the following statement of the inverse problem
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3d inverse problem: Find the unknown function λ(x), if it is known for the solution
of the direct problem

ut = (λux)x, (x, t) ∈ {0 < x < L, 0 < t < T}, (17)

ux|x=0 = 0, ux|x=L = 0, t ∈ [0, T ], (18)

u|t=0 = a(x), x ∈ [0, L], (19)

the following additional information

u|t=T = b(x), x ∈ [0, L]. (20)

Discussion of this problem can be found, for example, here [2].
This de�nition is interesting to us, because in this case, additional information is

not measured at the point x = 0 but at t = T .
Numerical solving of the inverse problem (17)-(20) reduces to �nding the minimum

of the residual functional:

J [λ] =

L∫
0

[u(x, T )− b(x)]2dx. (21)

The gradient of the residual functional (21) has the form:

J ′[λ](x) = −
T∫

0

ux(x, τ)ψx(x, τ)dτ (22)

where the function ψ(x, τ) is the solution of the conjugate problem

−ψt = (λψx)x, (x, t) ∈ {0 < x < L, 0 < t < T}, (23)

ψx|x=0 = 0, ψx|x=L = 0, t ∈ [0, T ], (24)

ψ|t=T = 2[u(x, T )− b(x)], x ∈ [0, L]. (25)

As in the case of the 1st inverse problem we deal with the same problem: one
iteration of the minimization of the residual functional (21) contains three basic steps,
the conjugate problem (23)-(25) can not be solved in a parallel way with the solving
of the direct problem (17)-(19), the solving of the conjugate problem requires as much
time as of the direct problem.

3.2 Transformation of the statement of the 3d inverse problem

Let us consider the following statement of direct problems:

−vt = (λvx)x, (x, t) ∈ {0 < x < L, 0 < t < T}, (26)

vx|x=0 = 0, vx|x=L = 0, t ∈ [0, T ], (27)

v|t=T = γ(x; νk), x ∈ [0, L], (28)
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where γ(x; νk) are known functions, depending on parameter νk (k = 0, 1, ...), and the
conditions γx|x=0 = γx|x=L = 0 are to be satis�ed.

Taking an integral of identical equation

0 ≡
T∫

0

L∫
0

(
ut − (λux)x

)
v dxdt−

T∫
0

L∫
0

(
−vt − (λvx)x

)
u dxdt

and taking into account (17)-(20) and (26)-(28), we obtain the equality

L∫
0

b(x)γ(x; νk) dx =

L∫
0

a(x)v(x, 0; νk) dx (29)

Thus, we can state:

4th inverse problem: Find the unknown function λ(x), if it is known for the solution
of the direct problem (26)-(28) the additional information (29).

For the numerical solving of the inverse problem (26)-(29), we will �nd the minimum
of the residual functional

Φ[λ] =
∑
k

 L∫
0

a(x)v(x, 0; νk) dx− bk

2

, (30)

where

bk =

L∫
0

b(x)γ(x; νk) dx,

that can be calculated beforehand. Calculating the gradient of the residual functional
(30), we �nd that the conjugate problem will be:

wt = (λwx)x, (x, t) ∈ {0 < x < L, 0 < t < T},
wx|x=0 = 0, wx|x=L = 0, t ∈ [0, T ],

w|t=0 = 2a(x) ·

 L∫
0

a(x)v(x, 0; νk) dx− bk

 , x ∈ [0, L],

where it is easily seen that

w(x, t; νk) = 2

 L∫
0

a(x)v(x, 0; νk) dx− bk

 · u(x, t).

Given this, the gradient of the residual functional (30) can be obtained as follows

Φ′[q](x) = −
T∫

0

Vx(x, τ)ux(x, τ) dτ, (31)
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where

V (x, t) =
∑
k

 L∫
0

a(x)v(x, 0; νk) dx− bk

 · v(x, t; νk).

Obviously, all the conclusions drawn in section 2.3, occur in this case too.

4 The Cauchy problem for the Laplace equation

4.1 The traditional way of solving the problem

Let us consider the Cauchy problem for the Laplace equation:

uxx + uyy = 0, (x, y) ∈ {0 < x < L, 0 < y < M},
ux|x=0 = 0, ux|x=L = 0, y ∈ [0,M ],

u|y=0 = 0, uy|y=M = b(x), x ∈ [0, L].

This statement of the problem can be reformulated as an inverse problem to �nd the
unknown boundary condition [3, 4]. This can be done in several ways, we formulate
the inverse problem as follows:

5th inverse problem: Find the unknown function p(x), if it is known for the solution
of the direct problem

uxx + uyy = 0, (x, y) ∈ {0 < x < L, 0 < y < M}, (32)

ux|x=0 = 0, ux|x=A = 0, y ∈ [0,M ], (33)

u|y=0 = 0, uy|y=B = p(x), x ∈ [0, L]. (34)

the following additional information

uy|y=0 = b(x), x ∈ [0, L]. (35)

This statement of the inverse problem is interesting for us, because the aim of
restoring is the unknown boundary condition on the parts of the boundary.

For the numerical solution of the 5th inverse problem the minimum of the following
residual functional can be sought

J [p] =

L∫
0

[uy(x, 0)− b(x)]2dx, (36)

which gradient has the form as follows

J ′[p](x) = −ψ(x,M), (37)

where the function ψ(x, y) is the solution of the conjugate problem

ψxx + ψyy = 0, (x, t) ∈ {0 < x < L, 0 < y < M}, (38)

ψx|x=0 = 0, ψx|x=L = 0, y ∈ [0,M ], (39)

ψ|y=0 = 2[uy(x, 0)− b(x)], ψy|y=M = 0, x ∈ [0, L]. (40)
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As in the case of inverse problems 1 and 3, we are faced with the same problem:
one iteration of the minimization of the residual functional (36) contains three basic
steps, the conjugate problem (38)-(40) can not be solved in a parallel way with the
solving of the direct problem (32)-(34), the solving of the conjugate problem requires
as much time as of the direct problem.

4.2 Transformation of the statement of the 5th inverse problem

Let us consider the following statements of the direct problems:

vxx + vyy = 0, (x, t) ∈ {0 < x < L, 0 < y < M}, (41)

vx|x=0 = 0, vx|x=L = 0, y ∈ [0,M ], (42)

vy|y=M = 0, v|y=0 = θ(x; νk), x ∈ [0, L], (43)

where θ(x; νk) are known functions, depending on parameter νk (k = 0, 1, ...), and the
conditions θx|x=0 = θx|x=L = 0 are to be satis�ed.

Taking an integral of identical equation

0 ≡
M∫
0

L∫
0

(
uxx + uyy

)
v dxdy −

M∫
0

L∫
0

(
uxx + uyy

)
v dxdy

and taking into account (32)-(35) and (41)-(43), we obtain the following equality:

L∫
0

p(x)v(x,M ; νk) dx =

L∫
0

b(x)θ(x; νk) dx. (44)

We note, that

• problems (41)-(43) are correctly formulated and can be solved in advance, i.e.
prior to the search of the unknown boundary condition p(x);

• for �nding the unknown function p(x) from (44), we obtained the relations

L∫
0

p(x)K(x, νk) dx = bk, (45)

where

K(x, νk) = v(x,M ; νk), bk =

L∫
0

b(s)θ(x; νk) dx, k = 0, 1, 2....

Thus, in this case, the proposed transformation reduced statement of the 5th inverse
problem to the solution of the moment problems.

Remark. As we found out, the reduction of the numerical solution of the Cauchy
problem for an elliptic equation to the solution of the moment problem has been pro-
posed in [8] and further developed in the papers [10]-[14], that represent the theoretical
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results, and various options for the numerical solution of this problem on the simulated
data.

If for �nding the function p(x) of the relations (45), we apply optimization method,
we will seek the minimum of the residual functional

Φ[p] =
∑
k

 L∫
0

p(x)K(x, νk) dx− bk

2

,

which gradient, as it is easily seen, has the form

Φ′[p](x) =
∑
k

2

 L∫
0

p(x)K(x, νk) ds− bk

 ·K(x, νk),

and does not require the solving of direct and conjugate problems.
Often in practice it is required to solve the problem (32)-(35) many times for the

same type of data b(x). The proposed procedure can help to reduce the computation
time signi�cantly, because the problems (41)-(43) are solved in advance.

If the domain has a simple form, such as in our case, then the appropriate choice
of functions θ(x, νk) can be obtained by the solution of the problem (41)-(43) in an
analytical form. If, for example,

θ(x, νk) = cos(νkx), νk =
kπ

L
, k = 0, 1, ...,

then it is easy to obtain a solution of (41)-(43)

v(x, y; 0) = 1, v(x, y; νk) =
e−νkMe νk(y−M) + e−νky

1 + e−2νkM
cos(νkx), k = 1, 2, ....

Substituting the corresponding expressions in (44), we obtain

p0 = b0, pk =
1

2
bk e

νkM
(
1 + e−2νkM

)
, k = 1, 2, ..., (46)

where pk, bk and ak are the Fourier series coe�cients for the related functions. Then

p(x) =
1

2
p0 +

∞∑
k=1

pk cos(νkx). (47)

Using found p(x), we solve the problem (32)-(34) and �nd u(x, y).

Remark. Impropriety of the Cauchy problem becomes apparent in the presence of
the factor e νkM in the expression for pk (see (46)), which increases with rising of k.

In the numerical calculating of series (47) the Tikhonov regularization [17] should
be used.
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4 Determining the right side of the elliptic equation

4.1 The traditional way of solving the inverse problem

Let us consider the following inverse problem: 6th inverse problem: Find the un-

known function f(x), if it is known for the solution of the direct problem

uxx + uyy = f(x)g(y), (x, y) ∈ {0 < x < L, 0 < y < M}, (48)

ux|x=0 = 0, ux|x=L = 0, y ∈ [0,M ], (49)

u|y=0 = 0, uy|y=M = 0, x ∈ [0, L], (50)

the following additional information

u|y=M = p(x), x ∈ [0, L], (51)

where the function g(y) ̸≡ 0 is known.

For the numerical solving of the inverse problem (48)-(51) the minimum of the
residual functional can be sought

J [p] =

L∫
0

[u(x,M)− p(x)]2dx, (52)

which gradient has the form as follows

J ′[p](x) = −
M∫
0

g(y)ψ(x, y) dy, (53)

where the function ψ(x, y) is the solution of the following conjugate problem

ψxx + ψyy = 0, (x, t) ∈ {0 < x < L, 0 < y < M}, (54)

ψx|x=0 = 0, ψx|x=L = 0, y ∈ [0,M ], (55)

ψy|y=M = 2[u(x,M)− p(x)], ψ|y=0 = 0, x ∈ [0, L]. (56)

As in the case of inverse problems 1, 3 and 5 we face the same problems: the
conjugate problem (54)-(56) can be solved only after the solving the direct problem
(48)-(50); numerical solving of the direct and conjugate problems requires the same
amount of computation time.

4.2 Transformation of the statement of 6th inverse problem

Let us consider the following statements of direct problems:

vxx + vyy = 0, (x, t) ∈ {0 < x < L, 0 < y < M}, (57)

vx|x=0 = 0, vx|x=L = 0, y ∈ [0,M ], (58)

v|y=0 = 0, vy|y=M = µ(x; νk), x ∈ [0, L], k = 0, 1, 2, .... (59)
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where µ(x; νk) are known functions, depending on parameter νk (k = 0, 1, ...).
Taking an integral of the related equality and respecting (48)-(51) and (54)-(56) we

obtain the equation

−
L∫

0

p(x)µ(x; νk) dx =

L∫
0

M∫
0

f(x)g(y)v(x, y; νk) dydx.

Let us note, that

• as in the previous case, the problems (57)-(59) can be solved in advance;
• for �nding the unknown function f(x), we obtain relations

L∫
0

f(x)K(x, νk) dx = pk, (60)

where

K(x, νk) =

M∫
0

g(y)v(x, y; νk) dy, pk = −
L∫

0

p(x)µ(x; νk) dx.

As in the previous case, the problem (60) can be solved using the minimization of
the related residual functional using some gradient method. As in the previous case,
to calculate the gradient of the residual functional, solutions of direct and conjugate
problems will not be required.

If the domain has a simple form, such as in our case, then the appropriate choice
of functions µ(x, νk) can be obtained by solving the direct problems (57)-(59) in an
analytical form. For example,

µ(x, νk) = cos(νkx), νk = kπ/L, k = 0, 1, ...,

then solutions of problems (57)-(59) will have the form

v(x, y; 0) = y, v(x, y; νk) =
1

νk
· e

νk(y−M) − e−νk(y+M)

1 + e−2νkM
cos(νkx), k = 1, 2, ....

Substituting the corresponding expressions in (60), we obtain

f0 =
1

q0
[Mb0 − p0] , fk =

pk
qk

(
1 + e−2νkM

)
, k = 1, 2, ...,

where fk and pk are the Fourier series coe�cients for the corresponding functions and

q0 =

L∫
0

g(y)y dy, qk =

L∫
0

g(y)
(
eνk(y−M) − e−νk(y+M)

)
dy, k = 1, 2, ....

Then for the following expression

f(x) =
1

2
f0 +

∞∑
k=1

fk cos(νkx),

the numerical calculating can be obtained using the Tikhonov regularization.
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6 Approach approbation

Calculations were carried out to solve the following problem. One or more drops of the
liquid rest on the upper surface of the heated foil (see Fig. 1), temperature is measured
on the bottom surface. It is required to determine the heat �ux on the upper surface.

Figure 1: Foil with a drop.

Now we present a mathematical statement of the problem.

Stationary process of heat transfer in foil is described by the equation

div
(
λ∇T

)
= −qV , (x, y, z) ∈ V ≡

{
(0, A)× (0, B)× (0, h)

}
. (61)

Here λ is conductivity coe�cient, qV is density of bulk heat sources, h≪ A and h≪ B,
because foil is considered as thin matter, A, B and h are linear dimensions of the foil.

On the part of boundary available for measurements we have condition

T |z=0 = T0(x, y). (62)

Also, we believe that on the surface the convective heat �ux is determined by the
Newton's law

λ
∂T

∂z

∣∣∣∣
z=0

= α
(
T |z=0 − T∞

)
, (63)

here T∞ is the temperature of environment.

Sidewalls of foil are heat insulated

λ
∂T

∂x

∣∣∣∣
x=0

= 0, λ
∂T

∂x

∣∣∣∣
x=A

= 0, λ
∂T

∂y

∣∣∣∣
y=0

= 0, λ
∂T

∂y

∣∣∣∣
y=B

= 0. (64)

Here qV , λ, α and T∞ are taken as known constants. The problem (61)-(64) is the
Cauchy problem for an elliptic equation.

It is required to de�ne q(x, y) = −λTz|z=h.

To solve the problem (61)-(64) the proposed approach was used.

Since the domain has the shape of a parallelepiped, as known functions and param-
eters we can choose

α(x, y, νx, νy) = cos(xνx) cos(yνy), νx =
πk

A
, νx =

πl

B
, k, l = 0, 1, 2, ..., (65)
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therefore the corresponding conjugate problems can be solved analytically, and for the
required �ow values we have the expression:

q(x, y) =
1

4
q̂00 +

1

2

∞∑
k=1

q̂k0 cos

(
πk

A
x

)
+

1

2

∞∑
l=1

q̂0l cos

(
πl

B
y

)
+

∞∑
k,l=1

q̂kl cos

(
πk

A
x

)
cos

(
πl

B
y

)
. (66)

where values of qkl are obtained from the analytical expressions analogical to (46).
Data collected during the physical experiment were smoothed. This was done in

two steps:

• smoothing of values obtained by wrong measured pixels: if the value at some
point exceeded by more than 15 % of the average value of the neighboring points,
the value at this point was taken as the average value at neighboring points;

• smoothing using the moving average of 25 points, the extreme values were smoothed
by 9 and 3 points respectively.

Since the solution of the Cauchy problem (61)-(64) is unstable, the Fourier series
(66) was taken �nite. The number of elements of series Nx and Ny was de�ned from
the condition

A∫
0

B∫
0

(
T0(x, y)−F [T0]

)2
dxdy = δ 2,

where FN [T0] is the �nite Fourier series for system of functions (65), δ is estimated
measurement error of the function T0(x, y), the Tikhonov regularization [17] was used
for the summing.

The numerical solution was tested by solving the problem (61)-(64) using the opti-
mization method [3, 4].

Two results of calculation series are shown on Fig. 2 (Fig. 2 - (a, b) � one drop,
Fig. 2-(c,d) � two drops).

6 Conclusions

The essence of the reformulation of an inverse problem statement in solving it using the
optimization method was demonstrated on four models of inverse problems as follows:

• coe�cient hyperbolic inverse problem;

• retrospective inverse problem of heat conduction;

• the Cauchy problem for the Laplace equation that can be reduced to the inverse
problem of search for the unknown boundary condition;

• problem of determining the right side of the elliptic equation.

It is shown, that when the inverse problem is the coe�cient problem (the �rst and
second example), then the use of parallel computing can reduce almost half of the
time of the numerical solution calculating of the inverse problem as solving direct and
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Figure 2: Calculated heat �ux. Left: the �ow values q(x, y, z = h) are given, on Oy
axis coordinate y0 is marked; right: the �ow values q(x, y = y0, z = h) are given,
the vertical lines indicate the boundaries of the drop. Parameters: h = 25 · 10−6 m,
λ = 23 W/(m�), qV = 2.09 · 1012 W/m3, (a)-(b) α = 16.2 W/(m2K), T∞ = 28.75 oC;
(c)-(d) α = 16.0 W/(m2K), T∞ = 28.8 oC.

conjugate problems can be searched in a parallel way. If the inverse problem is linear
(as it is in third example about search for an unknown boundary condition, and in
the fourth example about search for the right side of an equation), then the inverse
problem can be reduced to the numerical solution of the moment problem, for which
all the necessary functions can be computed in advance by the known data of direct
and inverse problems.

To illustrate the proposed approach the numerical solution of the Cauchy problem
for an elliptic equation on data obtained from the physical experiment is presented.
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