
EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER
APPLICATIONS
ISSN 2077�9879
Volume 1, Number 1 (2013) 78 � 102

INVERSION OF SOME SPHERICAL CAP RADON TRANSFORMS

T. T. Truong

Abstract Radon transforms on spheres have contributed to the �eld of partial di�er-
ential equations as solutions to Darboux equation's and, under prescribed conditions,
have served as imaging principles for Sonar, Radar, photo-acoustic imaging and the like.
In this paper the inverses of Radon transforms de�ned on three classes of spherical caps
(surfaces with boundary) are derived. Through the so-called Harmonic Component De-
composition of functions and the application of Funk-Hecke's theorem, the inversion
procedure follows a route established long ago for the Radon transform on spheres
intersecting a �xed point. These results may open the way to new three-dimensional
imaging processes, based on ionizing radiation properties
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1 Introduction

In his seminal paper of 1917 [1], J Radon had posed the problem of reconstructing a
function from the knowledge of its integrals on a su�ciently dense set M of smooth
sub-manifolds of Rn. WhenM is the set of planes in Rn, J Radon had given an explicit
solution. The extension of Radon's problem to more general sets of sub-manifolds has
been a tantalizing problem over the years. Such generalized Radon transforms originate
generally either from measurements of physical quantities or from pure mathematical
considerations. In transport theory, conservation laws in particle binary collisions imply
the appearance of generalized Radon transform on arbitrary surfaces in parameter
space [2]. Seismic imaging makes use of Radon transforms on isochronic surfaces [3]
(see also [4]). In 1987 A M Cormack had formulated the problem of de�ning a Radon
transform on a special class of surfaces displaying rotational symmetry about an axis,
unfortunately he could �nd an explicit inversion only in the cases of paraboloids and
cardioids of revolution [5]. In the end, it appears that the set of spheres emerges as
the most interesting surfaces for theoretical and practical purposes.

Radon transforms on R3-spheres have appeared in numerous applied �elds such as
Synthetic Aperture Radar (SAR) [6, 7], Sound Navigation and Ranging (SONAR) [8],
di�raction tomography [9] and more recently thermo-acoustic imaging [10, 11]. As a
sphere in Rn is speci�ed by (n + 1) parameters (the coordinates of its center and its
radius), particularized classes of spheres may be obtained by imposing one constraint
on its (n+1) parameters, then corresponding Radon transforms are precisely functions
of n variables. Known cases are spheres centered on a plane [12, 13, 14], spheres
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tangent to a surface [15]1, spheres centered on a given sphere [10, 16] and spheres
passing through a �xed point [9, 17]. It is remarkable to observe that not all classes
of spheres admit an inverse formula for the corresponding Radon transform which is
independent of n. Details can be found in excellent review articles, see e.g. chapter 7
of [18].

In various applications, collected data is generally expressed as Radon transform
on spheres of a physical density function. This is due to measurements of wave energy
resulting from propagation and interaction with a traversed medium. But in other
instances, the measurement is limited to spherical caps which are portions of the surface
of a sphere, as advocated in gamma-ray astrophysics by [19]. Now the main problem
consists of recovering this physical density function from the set of its integrals on
spheres or on spherical caps. This is an inverse problem, highly strategic for imaging
systems in medicine, in seismic, in astrophysics, in non-destructive material testing,
etc, which need to be solved. In mathematics, spherical means constitute a special
topic in Gelfand's integral geometry [20] and an e�cient tool for investigating partial
di�erential equations [21].

On the other hand, in a large number of articles dealing with this subject, the
name of spherical Radon transforms (or spherical means) occurs frequently. However
this denomination is not universal since it has been also used by some authors to
designate the Funk-Minkowski transform [22], which integrates functions on a sphere
along its great circles 2. Therefore, in this paper, to avoid possible confusion, by Radon
transforms on spherical caps we mean transforms that integrate functions on a spherical
cap in its natural measure - without dividing by the value of its area.

To get an intuitive picture, let us consider �rst spherical caps in R3. Geometrically
spherical caps are areas on the surface of a sphere bounded by a circular rim, having
a rotational symmetry axis which goes through the coordinate system origin O. Three
interrelated classes of such spherical caps will be described. They are classi�ed by their
position with respect to a reference sphere (Γq) of radius q and centered at O as follows:

• (Σ)-spherical caps: they are located on spheres passing through the origin of
coordinates O and lying away from (or externally to) (Γq),

• (Σ(1,ϵ))-spherical caps: they are on spheres intersecting (Γq) along one of its great
circles and lying either inside (Γq) (ϵ = −1) or outside (Γq) (ϵ = +1),

• (Σ(2,ϵ))-spherical caps: they are on spheres orthogonal to (Γq)
3. ϵ = −1 (resp.

ϵ = +1) labels the cap inside (resp. outside) (Γq).

The intersection of (Γq) with any of the three classes of spheres is a circular rim
(Cq), contained in a plane (Pq) which is orthogonal to the rotational symmetry axis of
any of the three classes of spherical caps. The (Σ)- and the (Σ(1,ϵ))-spherical caps are
situated away from (Pq), whereas the (Σ(2,ϵ))-spherical caps are each one (for given ϵ)
on either side of (Pq).

1cited by D Finch and Rakesh in [16]
2see e.g. [23, 24, 25]. This may cause some confusion and has been pointed out in [26]. Also it is

often said that this transform is "diagonalized" by spherical harmonics, e.g. see page 297 of [25].
3In R3-geometry, these spheres form a complex of spheres such that O is their radical point [27].
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We observe that for q → 0, the limit of

• the (Σ)-spherical cap or

• the (Σ(1,+1))-spherical cap or

• the (Σ(2,+1))-spherical cap

is a sphere intersecting the coordinate origin O, since their circular rim (Cq) shrinks to
the point O. Moreover, for given j the spherical caps (Σ(j,ϵ)) are geometrically inverse
of each other in the inversion of center O and modulus q, see subsection 3.1. These
observations may be then appropriately extended to Rn.

O�-hand it may look curious why such fancy spherical caps (Σ(j,ϵ)) come about in
de�ning new Radon transforms. This is because they are natural higher dimensional
extension of new arcs of circles in R2, on which Radon transforms are found to be
invertible [28]. The idea of treating Radon transforms on such spherical caps stems
from the work of A M Cormack [5], in which he found a class of particular surfaces
(which generalize a class of his special curves in R2), for which the Radon problem,
through spherical harmonic component decomposition of functions, is converted into
the inversion of a special Gegenbauer integral transform [29]. However an explicit
inversion for the spherical components of the sought function has only been found
for paraboloids (or cardioids) of revolution with freely swinging rotational symmetry
axis around the origin of coordinates. For this last case a global closed form for the
reconstructed function in R3 has been given later in [30]. In 1992 A Kurusa showed the
invertibility of the Radon transform on abstract rotational manifolds of real type, which
generalizes the Cormack's result without giving explicit inversion formulas [31]. Kurusa
established his results especially for sub-manifolds obtained by rotating a geodesic
around an orthogonal geodesic joining its closest point to a base point and also for
the case of spaces of constant curvature. Because of the assumed rotational symmetry,
both A M Cormack and A Kurusa have used the spherical harmonics decomposition
of functions to achieve their goal.

In this paper, following the pioneering works [5, 31], we derive explicit inversion
formulas for the Σ(j,ϵ)-spherical cap Radon transforms. Also as a by-product of the
function spherical component decomposition and as a result of Funk-Hecke theorem, we
show that the inversion procedure in this case can be reduced to the inversion procedure
of a standard Radon transform on spheres going through the coordinate system origin
[17]. Therefore explicit formulas can be written down for all n. However these results do
not necessarily imply that Radon transforms on whole spheres (Σj) = (Σ(j,+))

∪
(Σ(j,−))

are automatically invertible with the same approach.
The paper is organized as follows. In view of the set objective, section 2 is devoted

to reviewing the Radon transform on (Σ)-spherical caps, as worked out in [5, 17, 32, 33].
The next section 3 describes the crucial steps which convert the expression of the Radon
transforms on (Σ(j,ϵ)) with (j = 1, 2) into the form of the Radon transform on (Σ)-
spherical caps. In section 4, we discuss possible three-dimensional imaging processes
using the Compton e�ect undergone by ionizing radiation in matter. A short conclusion
summarizes the results and suggests some future research perspectives.
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Notations and assumptions

Throughout the text, we shall work with functions f(r) in S(Rn). These Schwartz
functional spaces do have such nice properties which turn out to be very convenient
when it comes to make changes in the order of integration and to perform repeated
integration by parts [34]. Incidentally this assumption has been adopted by A M
Cormack in [17, 35].

As the symmetry axis of these spherical caps is assumed to swing freely around
the coordinate origin O, it is appropriate to work with a spherical coordinate system
centered at O. Speci�cally we shall write f(r) = f(rk) = f(r,Ωk) with r ∈ R+ and Ωk

is the set of angular coordinates of the unit vector k ∈ Sn−1. Moreover we shall make
use of the expansion of f(r,Ωk) ∈ S(Rn) in Rn-spherical harmonics Slm(Ωk) (see [36])

f(r,Ωk) =
∑
lm

flm(r)Slm(Ωk). (1.1)

Let λ = (n − 2)/2 and for given l ∈ N, there are h(λ, l) spherical harmonic functions
Slm(Ωk), see [36] with

h(λ, l) =
2(l + λ) Γ(l + 2λ)

Γ(1 + l)Γ(1 + 2λ)
. (1.2)

Then we have also flm(r) ∈ S(R+).

2 The Radon transform on (Σ)-spherical caps

In this section, the Radon transform on(Σ)-spherical caps, its properties and inversion
formula are presented. It will serve as a basic framework for deriving properties and
inversion formulas for the Radon transform on the (Σ(j,ϵ))-spherical caps. Thus what-
ever property known or established for this case can be smoothly transferred to the
new cases.

2.1 De�nition

For a sphere of diameter p, such that the coordinate origin O lies on its surface, its
center Ω is speci�ed by the vector (p/2)n, with n ∈ Sn−1 and OΩ = p/2. In a spherical
coordinate system centered at O, its equation is r = p (k · n). For 0 < q < p, this
sphere intersects (Γq) and the part of this sphere away from (Γq) (i.e. not containing
O), is called a Σ-spherical cap. The normalized delta function concentrated on this
(Σ)-spherical cap, with respect to the volume element is rn−1 dr dΩk, is given by

δ(Σ) =
p

r
δ(r − p (k · n)), (2.1)

where dΩk is the measure on the unit sphere and q < r < p, see eq. (A2) in Appendix
A of [5]. Note that (k · n) is the cosine of an angle and consequently 0 < r < p.

De�nition 2.1. Let f(r) = f(r,Ωk) ∈ S(Rn). Its Radon transform on (Σ)-spherical

caps f̂(p,Ωn), for p > q, is given by

f̂(p,Ωn) =

∫
Rn

rn−1 dr dΩk
p

r
δ(r − p(k · n)) f(r,Ωk). (2.2)
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Evidently for p < q, f̂(p,Ωn) = 0 4. Note that, since both r and p are positive, the
equation of the Σ-sphere implies that k can be at most orthogonal to n.

2.2 The integral transform for function spherical components

Proposition 2.2. Let flm(r) (resp. f̂lm(p) be the spherical components of f(r,Ωr)

(resp. f̂(p,Ωn). Then they are related by the following Gegenbauer integral transform

f̂lm(p) =
ωn−2

Cλ
l (1)

∫ p

q

dr Cλ
l (r/p)

(
1− r2

p2

)λ−1/2

r2λ flm(r), (2.3)

Proof. When the spherical component decomposition (1.1) of f(r,Ωk) is inserted in

eq. (2.2), f̂(p,Ωn) can be written as an (lm)-sum of terms f̂lm(p,Ωn) of the form

f̂lm(p,Ωn) =

∫
Rn

rn−1 dr dΩk
p

r
δ(r − p(k · n)) flm(r)Slm(Ωk). (2.4)

After performing the r-integration, eq. (2.4) can now be written as

f̂lm(p,Ωn) =

∫
Sn−1

dΩk Slm(Ωk)G
2λ
lm((k · n)), (2.5)

with

G2λ
lm((k · n)) = p (p(k · n))2λ flm(p(k · n)). (2.6)

As G2λ
lm((k ·n)) is solely a function of the inner product of two unit vectors in Sn−1, the

Funk-Hecke theorem [36] gives the value of the Ωk-integral in eq. (2.5) as f̂lm(p,Ωn) =
β2λ
lm(p)Slm(Ωn), where β

2λ
lm(p) is

β2λ
lm(p) =

ωn−2

Cλ
l (1)

∫ 1

(q/p)

dt Cλ
l (t)

(
1− t2

)λ−1/2
p (p t)2λ flm(p t), (2.7)

where ωn−2 = 2π
n−1
2 /Γ(n−1

2
) is the area of the unit sphere Sn−2 and Cλ

l (t) the (l, λ)-
Gegenbauer polynomial of variable t. Thus we can identify β2λ

lm(p) as the spherical

component f̂lm(p) of the Radon transform f̂(p,Ωn). The integral equation connecting

the spherical component of f to the spherical component of f̂ is therefore

f̂lm(p) =
ωn−2

Cλ
l (1)

∫ p

q

dr Cλ
l (r/p)

(
1− r2

p2

)λ−1/2

r2λ flm(r), (2.8)

when rewritten as an integral on r. This integral is well-de�ned for flm(r) ∈ S(R+)
and eq. (2.8) represents a Gegenbauer transform considered in [37, 38] 5.

4In a sense this Radon problem for q > 0 is akin to the exterior Radon problem on hyper-planes
lying outside a sphere (Γq) see e.g. Ludwig [29].

5Because the integral kernel depends only on l, the index m is generally dropped, see e.g. eq. (2.8)
[17, 32]
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When p→ ∞ inspection of eq. (2.8) shows that

limp→∞f̂lm(p) =
ωn−2

Cλ
l (1)

C0
l (0)

∫ ∞

q

dr r2λ flm(r),

the last integral being �nite for flm(r) ∈ S(R+) and

C0
l (0) = 0 for l odd

= (−1)l
Γ(λ+ l/2)

Γ(λ)Γ(1 + l/2)
for l even

However the Radon data depends implicitly on q, the lower bound of r, as can be seen
from the q-derivative of f̂lm(p)

d

dq
f̂lm(p) = − ωn−2

Cλ
l (1)

Cλ
l (q/p)

(
1− q2

p2

)λ−1/2

q2λ flm(q). (2.9)

2.3 Null space for q = 0

For q ̸= 0, the existence and the nature of the null space of this spherical cap Radon
transform remains open for the time being. However for q = 0, there exists a result
due to E T Quinto in [32] for spherical means which can be cited as follows:

Theorem 2.3. Let B be a ball centered at the origin of Rn. The null space of the
Radon transform on the (Σ)-spheres for L2(B) functions is the closure of the span of
functions of the form rk+2−n Slm(Ωk), where (n − 4)/2 < k < l, with (l − k) even

and Slm(Ωk), a homogeneous spherical harmonic of degree l. The map f 7−→ f̂ in
L2(B) → L2(B) is one to one.

This means that for functions such as flm(r) = rk, where k ∈ N

(̂rk)lm(p) =
ωn−2

Cλ
l (1)

∫ p

0

dr Cλ
l (r/p)

(
1− r2

p2

)λ−1/2

r2λ rk = 0, (2.10)

if n is even (resp. odd) then k is even (resp. odd); l is even and l > k + n− 2.

2.4 Consistency conditions on the Radon data

As it is current in the approach by spherical components, one may ask which values of
k ∈ N annihilates the integral ∫ ∞

q

dp p−k f̂lm(p) = 0. (2.11)

Proposition 2.4. For f̂lm(p,Ωn) given by eq. (2.8), the integral (2.11) vanishes for
k = 2, 3, ..., l, (l + 1).
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Proof. To compute these values of k, we use (2.8) and Fubini's theorem to get∫ ∞

q

dp p−k f̂lm(p) =
ωn−2

Cλ
l (1)

∫ ∞

q

dr r2λ flm(r)

∫ ∞

r

dp p−k Cλ
l (r/p)

(
1− r2

p2

)λ−1/2

,

(2.12)
which becomes after a change of variable∫ ∞

q

dp p−k f̂lm(p) =
ω2λ

Cλ
l (1)

∫ ∞

q

dr r2λ flm(r) r
1−k
∫ 1

0

dt tk−2Cλ
l (t)

(
1− t2

)λ−1/2
.

(2.13)
The value of the t-integral in (2.13) can be found in [39] as∫ 1

0

dt tk−2Cλ
l (t)

(
1− t2

)λ−1/2
=

Γ(2λ+ l)

Γ(2λ)

Γ(λ+ 1/2)

2l+1 l!

Γ((k − l − 1)/2)

Γ(λ+ (k + l)/2)

Γ(k − 1)

Γ(k − l − 1)
.

(2.14)

The two �rst fractions on the right-hand-side do not depend on k, the third fraction
in general has no zeros. The last fraction is

Γ(k − 1)

Γ(k − l − 1)
= (k − 2)(k − 3)...(k − l)(k − l − 1) (2.15)

Hence the integral (2.11) vanishes only for k = 2, 3, ..., l, (l + 1) (l values of k), which
is expected from the orthogonality of the Gegenbauer polynomials. �

2.5 Inversion formula

Before starting the inversion procedure, we prove the lemma

Lemma 2.5. For g(s) ∈ C∞(R), we have(
d

dt

)m+1 ∫ t

0

ds g(s) (t− s)m = m! g(t). (2.16)

Proof. For m = 1, this is explicitly veri�ed(
d

dt

)2 ∫ t

0

ds g(s) (t− s) =
d

dt

∫ t

0

ds g(s) = 1! g(t) (2.17)

For m > 1, as (t− s)m =
∑m

l=0

(
m
l

)
(−s)ltm−l the left-hand-side of eq. (2.16) is

(
d

dt

)m+1 ∫ t

0

ds g(s) (t− s)m =

(
d

dt

)m m∑
l=0

(
m
l

)
(−1)l(m− l)tm−l−1

∫ t

0

ds g(s) sl,
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(2.18)

since the second term from the d/dt is tmg(t)
∑m

l=0

(
m
l

)
(−1)l = 0. By rearranging

the binomial expansion coe�cient and factorizing m, the rest is just the binomial
expansion coe�cient of (t− s)m−1. Hence(

d

dt

)m+1 ∫ t

0

ds g(s) (t− s)m = m

(
d

dt

)m ∫ t

0

ds g(s) (t− s)m−1 = m (m− 1)! g(t),

(2.19)
by recursion. �

Theorem 2.6. The spherical component flm(r) of f(r,Ωk) ∈ S(Rn) is recovered via

the spherical component f̂lm(p) of f̂(p,Ωn) ∈ S(Rn) by

flm(r) =
1

K(λ, l)

1

r2λ

(
d

dr

)2λ+1

r2λ−1

∫ r

q

dp Cλ
l (r/p)

(
1− p2

r2

)λ−1/2

f̂lm(p). (2.20)

where

K(λ, l) =
ωn−2

Cλ
l (1)

π

22λ−1

{
Γ(l + 2λ)

Γ(λ) Γ(1 + l)

}2

. (2.21)

Moreover the reconstructed f(r,Ωk) ∈ Rn does not depend on q.

Proof. Eq. (2.8) is a Gegenbauer transform which can be inverted in a standard way.
To this end we multiply on both sides of eq. (2.8) by Cλ

l (s/p)((s/p)
2 − 1)λ−1/2 p2λ−1

and integrate over p from q to s∫ s

q

dp Cλ
l (s/p)

(
s2

p2
− 1

)λ−1/2

p2λ−1 f̂lm(p) =

∫ s

q

dp Cλ
l (s/p)

(
s2

p2
− 1

)λ−1/2

p2λ−1 ωn−2

Cλ
l (1)

∫ p

q

dr Cλ
l (r/p)

(
1− r2

p2

)λ−1/2

r2λ flm(r),

(2.22)

the right-hand-side becomes after exchange of integration order

ωn−2

Cλ
l (1)

∫ s

q

dr r2λ flm(r)

∫ s

r

dp p2λ−1Cλ
l (r/p)C

λ
l (s/p)

(
1− r2

p2

)λ−1/2 (
s2

p2
− 1

)λ−1/2

.

(2.23)

The p-integral can be exactly evaluated (formula (30) in [37]) and is equal to

π

22λ−1

(
Γ(l + 2λ)

Γ(l + 1)Γ(λ)

)2
(s− r)2λ

Γ(2λ+ 1)
. (2.24)
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Then we get

K(λ, l)

Γ(1 + 2λ)

∫ s

q

dr (s− r)2λ r2λ flm(r) = s2λ−1

∫ s

q

dp Cλ
l (s/p)

(
1− p2

s2

)λ−1/2

f̂lm(p).

(2.25)

To extract flm(r) from the above eq. (3.2), we use the lemma 2.5.1.

Noting that 2λ = (n − 2) is an integer since n ∈ N, application of formula (2.16)
leads to the reconstruction formula for the spherical components flm(r)

flm(r) =
1

K(λ, l)

1

r2λ

(
d

dr

)2λ+1

r2λ−1

∫ r

q

dp Cλ
l (r/p)

(
1− p2

r2

)λ−1/2

f̂lm(p). (2.26)

Thus flm(r) is well-de�ned for all q < p < r, since f̂lm(p) is of the form f̂lm(p) =
p2λ+l+1 × hλlm(p) and reconstructed with the Radon data in q < p < r. At this point
there is no need to use the consistency conditions.

We now show that the reconstructed flm(r) does no depend on q. For this we
compute �rst the q-derivative of the p-integral

d

dq

∫ r

q

dp Cλ
l (r/p)

(
1− p2

r2

)λ−1/2

f̂lm(p) =

−Cλ
l (q/p)

(
1− p2

r2

)λ−1/2

f̂lm(q) +

∫ r

q

dp Cλ
l (r/p)

(
1− p2

r2

)λ−1/2
d

dq
f̂lm(p),

(2.27)

As f̂lm(q) = 0, we only have to evaluate the p-integral in eq. (2.27) with the help of
eq. (2.9) and the result of eq. (2.24)

− ωn−2

Cλ
l (1)

q2λ flm(q)

∫ r

q

dp Cλ
l (r/p)

(
1− p2

r2

)λ−1/2

Cλ
l (q/p)

(
1− q2

p2

)λ−1/2

, (2.28)

which is

− ωn−2

Cλ
l (1)

q2λ flm(q)
1

r2λ−1

π

22λ−1

(
Γ(l + 2λ)

Γ(l + 1)Γ(λ)

)2
(r − q)2λ

Γ(2λ+ 1)
. (2.29)

Thus to recover flm(r), one should apply the di�erential operator (see eq. (2.24)(
d

dr

)2λ+1

r2λ−1

to the previous result (2.29), which is evidently 0 since it is the (n− 1)th r-derivative
of an r-polynomial (r − q)n−2 of order (n − 2) in r. Hence the reconstruction of the
spherical components of f(r,Ωk) is independent of q. �
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2.6 An alternative form of the inversion formula

Because eq. (2.26) may not be numerically stable for q = 0, an alternative inversion
formula can be derived following the approach proposed by A M Cormack in [40]. We
observe that the p-integral in (2.26) can be transformed in the following way to avoid a

possible divergence of the integrand for p = q → 0, when f̂lm(p) decrease fast enough.

Proposition 2.7. The product of Cλ
l (r/p) with (1− p2/r2)

λ−1/2
can be represented as

the sum of a polynomial and of a convergent power series for p < r

Cλ
l (r/p)

(
1− p2

r2

)λ−1/2

= Nl(r/p)
(
Qλ
l (r

2/p2) +Rλ
l (p

2/r2)
)

with

Qλ
l (r

2/p2) =

[l/2]∑
κ=0

Qλ
l,κ(−1/4)

(
4r2

p2

)[l/2]−κ

(2.30)

Rλ
l (p

2/r2) =
∞∑
κ=1

Rλ
l,κ(−1/4)

(
p2

4r2

)κ
,

where Nl(x) = 1 if l = even, and Nl(x) = 2x if l = odd, and

Qλ
l,κ(z) = 4κ

κ∑
j=0

(
(λ)l−κ−j(−λ+ 1/2)j

(l − 2κ− 2j)!

)
zκ−j

(κ− j)!
,

Rλ
l,κ(z) = 4κ+[l/2]

[l/2]∑
i=0

(
(λ)l−i(−λ+ 1/2)[l/2]+κ−i

(l − 2i)!

)
zi

i!
, (2.31)

with (a)n = Γ(a+ n)/Γ(a), the Pochhammer symbol for a, [x] the largest integer in x.

Proof. The proof consists in using the power expansions for p/r < 1 of the Gegenbauer
polynomial

Cλ
l (r/p) =

[l/2]∑
κ=0

(−1)κ
(λ)l−κ

κ!(l − 2κ)!

(
2
r

p

)l−2κ

, (2.32)

and of the binomial(
1− p2

r2

)λ−1/2

=
∞∑
n=0

(−λ+ 1/2− n)n

(
p2

r2

)n
, (2.33)

and reordering the product as an increasing power series in (p/r). Qλ
l,κ(z) and R

λ
l,κ(z)

are special hypergeometric polynomials of the variable z.

Eq. (2.26) can now be put under the form

flm(r) =
1

K(λ, l)

1

r2λ

(
d

dr

)2λ+1

r2λ−1

∫ r

q

dpNl(r/p)
(
Qλ
l (r

2/p2) +Rλ
l (p

2/r2)
)
f̂lm(p).
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(2.34)

The �rst integral with Qλ
l (r

2/p2) in the integrand may be transformed after taking into
account the consistency conditions (2.14,2.15) into∫ r

q

dpNl(r/p)Q
λ
l,[l/2](−1/4) f̂lm(p). (2.35)

But this is a constant for l = even and a linear function in r for l = odd. Hence upon
application of (d/dr)2λ+1r2λ−1, these contributions vanish. Therefore we have a new
form of the reconstruction formula for the spherical component of f(r,Ωk), namely

flm(r) =
1

K(λ, l)

1

r2λ

(
d

dr

)2λ+1

r2λ−1×[∫ r

q

dpNl(r/p)Rλ
l (p

2/r2)f̂lm(p)−
∫ ∞

r

dpNl(r/p)Qλ
l (r

2/p2)f̂lm(p)

]
. (2.36)

�

• We observe that Rλ=1/2
l (p2/r2) = 0 and Nl(r/p)Qλ=1/2

l (r2/p2) = Pl(r/p).

• Up to this stage, it is not possible to write down a closed form inversion formula
by reformulating the summation f(r, ωk) =

∑
lm flm(r)Slm(ωk). This is due to

the fact for general n > 3, the p-integrals in eq. (2.36) cannot be evaluated
explicitly.

3 The Radon transform on the (Σ(j,ϵ))-spherical caps in Rn

In this section we show that the Radon transform on the (Σ(j,ϵ))-spherical caps, for
ϵ = ± 1 and j = 1, 2, can be brought down to the form of the Radon transform on
(Σ)-spherical caps presented in section 2 for a new function of a new variable. We
�rst give a description of the (Σ(j,ϵ))-spherical caps. Then the expression of the related
Radon transform is introduced. Next when spherical component of functions are used,
this Radon transform takes the form of a special Gegenbauer integral transform, which,
amazingly through a succession of proper change of variables and functions, regains
the form of eq. (2.8). Such a feat has been already noticed by A M Cormack for R2

in [40]. Thus upon establishment of this correspondence, it is straightforward to write
down the explicit inversion formulas.

3.1 The Radon transform on (Σj,ϵ)-spherical caps with ϵ = ± 1
and j = 1, 2

Spherical cap's equation

In a Rn-spherical coordinate system, where a point r = r k is labeled by (r,Ωk), (r = |r|
and Ωk is the set of angles de�ning the unit vector k ∈ Sn−1), a (Σ(j,ϵ))-spherical cap
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with axis of rotational symmetry going through the coordinate system origin O in the
direction of the unit vector n is given by

r(j,ϵ) = r(j,ϵ)(τ, t) = q(ϵj−1
√
τ 2t2 + (−1)j−1 + ϵjτ t), (3.1)

where t = (n · k) and τ a real parameter. Thus the r(j,ϵ) are positive for τ > 0 and
0 < t < 1 if j = 1 and for t > τ−1 > 1 if j = 2. It can be checked that r(j,+)r(j,−) = q2.
This shows that, for given j, the spherical caps (Σ(j,ϵ)) are inverse of each other in an
inversion of center O and modulus q. Moreover r(j,ϵ) are the positive solutions of

t =
ϵj

2τ

(
r(j,ϵ)
q

+ (−1)j
q

r(j,ϵ)

)
. (3.2)

De�nition

De�nition 3.1. The Radon transform on a (Σ(j,ϵ))-spherical cap maps a function

f(r,Ωk) ∈ S(Rn) onto f̂ (j,ϵ)(τ,Ωn) given by

f̂ (j,ϵ)(τ,Ωn) =

∫ ∞

0

rn−1 dr

∫
Sn−1

dΩk δ(Σj,ϵ) f(r,Ωk), (3.3)

where δ(Σ(j,ϵ)) is the normalized delta function on these spherical caps

δ(Σ(j,ϵ)) =

√
τ 2 + (−1)j−1

τ 2t2 + (−1)j−1
δ
(
r − q(ϵj−1

√
τ 2t2 + (−1)j−1 + ϵjτ t)

)
Hj(t). (3.4)

where

Hj(t) = δj 1 for t > 0 (3.5)

= δj 2 for t > τ−1).

The square root normalization factor is necessary so that the integral over all Rn of
δ(Σ(j,ϵ)) is the area ωn−1 of the unit sphere Sn−1 in Rn.

Remark

We observe that the delta functions concentrated on spheres on which the considered
spherical caps (Σ(j,ϵ)) are located can be expressed as

• δ(
√
r2 + ϵ2r τq cos γ + τ 2q2 − q

√
τ 2 + 1), for spheres (Σϵ

1) on which (Σ(1,ϵ)) lies,

• δ(
√
r2 − 2r τq cos γ + τ 2q2 − q

√
τ 2 − 1), for spheres (Σ2) = (Σ2,−)

∪
(Σ2,+).

They may be used to de�ne Radon transform on such spheres and not on spherical
caps, as we do in this work.

3.2 The associated Gegenbauer integral transform for the
spherical components

We now give successively several equivalent forms of this Radon transform which are
necessary for its inversion.
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Original form

The �rst form of the integral equation linking the spherical components flm(r) and

f̂
(j,ϵ)
lm (τ) is given by

Proposition 3.2. The Radon transform on (Σj,ϵ)-spherical caps, de�ned as the map-

ping f(r,Ωk) 7→ f̂ (j,ϵ)(τ,Ωn), may be equivalently expressed as the mapping of the

function spherical components: flm(r) 7→ f̂
(j,ϵ)
lm (τ) with

f̂
(j,ϵ)
lm (τ) =

ωn−2

Cλ
l (1)∫ 1

−1

dtCλ
l (t) (1− t2)λ−1/2

√
τ 2 + (−1)j−1

τ 2(n · k)2 + (−1)j−1
Hj(t)

(
rn−1 flm(r)

)
r=r(j,ϵ)(τ,t)

,

(3.6)

where Hj(t) is de�ned by eq. (3.5).

Proof. If f(r,Ωk) is replaced by its decomposition in spherical components (see eq.

(1.1)), then its (Σ(j,ϵ))-spherical cap appears as the sum f̂ (j,ϵ)(τ,Ωn) =
∑

lm f̂
(j,ϵ)
lm (τ,Ωn)

where, after performing the r-integration in eq. (3.3)

f̂
(j,ϵ)
lm (τ,Ωn) =

∫
Sn−1

dΩk Slm(Ωk)G
(j,ϵ)
lm (τ,n · k), (3.7)

with

G
(j,ϵ)
lm (τ,n · k) =

√
τ 2 + (−1)j−1

τ 2(n · k)2 + (−1)j−1
Hj(t)

(
rn−1 flm(r)

)
r=r(j,ϵ)(τ,n·k)

. (3.8)

Funk-Hecke theorem gives the value of f̂
(j,ϵ)
lm (τ,Ωn) in eq. (3.16). Hence we may identify

β
(j,ϵ)
lm (τ) with the lm-spherical component of f̂ (j,ϵ)(τ,Ωn). Transcribing the expression

of β
(j,ϵ)
lm (τ) given in [36], we obtain an integral equation

f̂
(j,ϵ)
lm (τ) =

ωn−2

Cλ
l (1)

∫ 1

−1

dtCλ
l (t) (1− t2)λ−1/2G

(j,ϵ)
lm (τ, t), (3.9)

linking the spherical components. Then eq. (3.6) is obtained after replacing G
(j,ϵ)
lm (τ, t)

by its expression as given in eq. (3.8). This is also a Gegenbauer-type integral equation.
�

Second form of eq. (3.6) using the r(j,ϵ)-variable

We now go through a few steps to bring eq. (3.9) to the form of eq. (2.8). Then the
inversion procedure of the Σ-spherical cap Radon transform can be applied to obtain
the inversion of the (Σ(j,ϵ))-spherical cap Radon transforms.
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Proposition 3.3. Eq. (3.6) can be alternatively reformulated as

f̂
(j,ϵ)
lm (τ) =

ωn−2

Cλ
l (1)

ϵ

√
τ 2 + (−1)j−1

τ

∫ q(ϵj−1
√
τ2+(−1)j−1+ϵjτ)

q

dr(j,ϵ)
r(j,ϵ)

×

Cλ
l

(
ϵj

2τ

(
r(j,ϵ)
q

+ (−1)j
q

r(j,ϵ)

))(
1− 1

4τ 2

(
r(j,ϵ)
q

+ (−1)j
q

r(j,ϵ)

))λ−1/2

rn−1
(j,ϵ)flm(r(j,ϵ)).

(3.10)

Proof. To this end we switch back to the variable r(j,ϵ) as integration variable. From
eq. (3.1), one may establish that

dr(j,ϵ)
r(j,ϵ)

= ϵτ
dt√

τ 2t2 + (−1)j−1
. (3.11)

The factor Hj(t) �xes the lower t-integration bound to be t0j = (j− 1)δj1 + τ−1δj2,
the corresponding values of r(j,ϵ)(t0j) = q. The upper bound of the t-integration is

always 1, this implies that the r(j,ϵ)(1)-upper bound is r(j,ϵ)(1) = q(ϵj−1
√
τ 2 + (−1)j−1+

ϵjτ).
The integral equation (3.6) takes now the form of eq. (3.10). �

Third form of eq. (3.6) using the s(j,ϵ)-variable

We now perform another change of variables in order to have

Proposition 3.4. An alternative way to express the Gegenbauer transform f̂
(j,ϵ)
lm (τ) of

flm(r) is

τ f̂
(j,ϵ)
lm (τ)√

τ 2 + (−1)j−1
=

ωn−2

Cλ
l (1)

ϵ2
∫ τ

(j−1)

ds(j,ϵ)√
s2(j,ϵ) + (−1)j−1

Cλ
l (s(j,ϵ)/τ)

(
1−

s2(j,ϵ)
τ 2

)λ−1/2

(rn−1
(j,ϵ)flm(r(j,ϵ)))r(j,ϵ)=q

(
ϵj−1

√
s2
(j,ϵ)

+(−1)j−1+ϵjs(j,ϵ)

).
(3.12)

Proof. Let

s(j,ϵ) =
ϵj

2

(
r(j,ϵ)
q

+ (−1)j
q

r(j,ϵ)

)
, (3.13)

or conversely r(j,ϵ) may be solved in terms of s(j,ϵ) as

r(j,ϵ) = q
(
ϵj−1

√
s2(j,ϵ) + (−1)j−1 + ϵjs(j,ϵ)

)
. (3.14)

Then a relation between the di�erentials ds(j,ϵ) and dr(j,ϵ) may be found

dr(j,ϵ)
r(j,ϵ)

= ϵ
ds(j,ϵ)√

s2(j,ϵ) + (−1)j−1
. (3.15)

This implies new boundary values for the s(j,ϵ)-integration:
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• First bound: if r(j,ϵ) = q then s(j,ϵ) = (j − 1) δj1 + δj2,

• Second bound: if r(j,ϵ) = q(ϵj−1
√
τ 2 + (−1)j−1 + ϵjτ) then s(j,ϵ) = τ ,

Note that

τ f̂
(j,ϵ)
lm (τ)√

τ 2 + (−1)j−1
= 0 for (j = 1, τ = 0) or (j = 2, τ = 1).

Putting these elements together one gets a third form for eq. (3.6), which is eq.
(3.15). Note that ϵ2 = 1 appears in this expression. �

Final form of eq. (3.6)

Proposition 3.5. Through the substitutions

F̂
(j,ϵ)
lm (τ) =

τ f̂
(j,ϵ)
lm (τ)√

τ 2 + (−1)j−1
, (3.16)

s2λ(j,ϵ) F
(j,ϵ)
lm (s(j,ϵ)) =

(rn−1
(j,ϵ)flm(r(j,ϵ)))r(j,ϵ)=q

(
ϵj−1

√
s2
(j,ϵ)

+(−1)j−1+ϵjs(j,ϵ)

)√
s2(j,ϵ) + (−1)j−1

,

(3.17)

eq. (3.12) takes the form of eq. (2.8) obtained in the case of the Radon transform on

the Σ-spherical cap of section (1)

F̂
(j,ϵ)
lm (τ) =

ωn−2

Cλ
l (1)

∫ τ

(j−1)

ds(j,ϵ)C
λ
l (s(j,ϵ)/τ)

(
1−

s2(j,ϵ)
τ 2

)λ−1/2

s2λ(j,ϵ) F
(j,ϵ)
lm (s(j,ϵ)).

(3.18)

Proof. The proof is straightforward. Note that, as flm(r(j,ϵ)) ∈ S(R+), eq. (3.17) shows

that F
(j,ϵ)
lm (s(j,ϵ)) has the same decrease rate as flm(r(j,ϵ)) for r(j,ϵ) → ∞. �

This result shows that in a space with spherical coordinates (s(j,ϵ),Ωk), deduced
from the original spherical coordinates (r,Ωk) by eq. (3.13), the function F (s(j,ϵ),Ωk)

is transformed into F̂ (j,ϵ)(τ,Ωn) by a Radon transform on (Σ)-spherical caps. Both

F (s(j,ϵ),Ωk) and F̂
(j,ϵ)(τ,Ωn) are related to f(r,Ωk) and to f̂(τ,Ωn) by eqs. (3.16,3.17).

This observation is similar to the one made by A M Cormack for his Radon transform
on α- and β-curves in the plane [5]. This remarkable feat, although implicit in [31], is
explicitly demonstrated for the (Σ(j,ϵ))-spherical caps.
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3.3 Null spaces

The problem is the determination of the values of k ∈ N, for F (j,ϵ)
lm (s(j,ϵ)) = (s(j,ϵ))

k

which makes the integral (3.18) vanishes, i.e.

ωn−2

Cλ
l (1)

∫ τ

(j−1)

ds(j,ϵ)C
λ
l (s(j,ϵ)/τ)

(
1−

s2(j,ϵ)
τ 2

)λ−1/2

s2λ(j,ϵ) (s(j,ϵ))
k = 0 (3.19)

A change of variable t = s(j,ϵ)/τ leads to the integral

ωn−2

Cλ
l (1)

τ 2λ+1+k

∫ 1

(j−1)/τ

dt Cλ
l (t) (1− t2)λ−1/2 t2λ+k, (3.20)

which is calculable only for j = 1 and has the value (see eq. (2.14))

Γ(2λ+ l)

Γ(2λ)

Γ(λ+ 1/2)

2l+1 l!

Γ((2λ+ 1 + k − l)/2)

Γ(2λ+ 1 + (k + l)/2)

Γ(2λ+ 1 + k)

Γ(2λ+ 1 + k − l)
.

This expression vanishes for k = (2λ+ k)(2λ+ k− 1)...(2λ+ k + 1− l). Consequently
the null space for j = 2 remains yet to be determined.

3.4 Consistency conditions on the Radon data

The question is to determine k ∈ N, such that∫ ∞

(j−1)

dτ τ−k F̂
(j,ϵ)
lm (τ) = 0. (3.21)

Setting the expression of F̂
(j,ϵ)
lm (τ) given by Eq. (3.18) in eq. (3.21), we perform the

calculation of the integral as in subsection (2.4) and end up with the values of k given
by (2.15), i.e. k = 2, 3, ..., l, (l + 1).

3.5 Inversion of the Gegenbauer integral transform for spheri-
cal components

We are now in a position to state the following theorem:

Theorem 3.6. The reconstructed spherical component flm(r) is given in terms of

f̂
(j,ϵ)
lm (τ) by

rn−1 flm(r)

1
2

∣∣∣( rq + (−1)j−1 q
r

)∣∣∣ = 1

K(λ, l)

 ϵ r

1
2

∣∣∣( rq + (−1)j−1 q
r

)∣∣∣ ddr
2λ+1 (

1

2

∣∣∣∣(rq + (−1)j
q

r

)∣∣∣∣)2λ−1

×

∫ ϵj

2
(r/q+(−1)jq/r)

(j−1)

dτ Cλ
l

(
ϵj

2
(r/q + (−1)jq/r)

) 1− τ 2

1
4

(
r
q
+ (−1)j q

r

)2

λ−1/2

τ f̂
(j,ϵ)
lm (τ)√

τ 2 + (−1)j−1
,

(3.22)

where r = r(j,ϵ) for short.
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Proof. Transposing the inverse formula for the Σ-spherical cap Radon transform (2.26)
to eq. (3.18) yields the formula

F
(j,ϵ)
lm (s) =

1

K(λ, l)

1

s2λ

(
d

ds

)2λ+1

s2λ−1

∫ s

(j−1)

dτ Cλ
l (s/τ)

(
1− τ 2

s2

)λ−1/2

F̂
(j,ϵ)
lm (τ),

(3.23)

where s = s(j,ϵ) to save writing. We now invert eqs. (3.16,3.17) to retrieve the �nal
reconstruction formula for the spherical components flm(r) of f(r,Ωk). �

Of course a closed form of this inversion is not obtainable at present. The indepen-
dence of the result of the parameter q may be argued on the basis of scale invariance:
only r/q occurs in the calculation as in Cormack's work. We also should check that
the integrals are well-de�ned as we have changed functions. But our goal has been
achieved with eq. (3.22).

4 Radon transforms on (Σ(j,ϵ))-spherical caps in R3

In this section the case λ = 1/2 (or n = 3) is considered because there may be potential
applications in three-dimensional imaging processes based on the detection of Compton
scattered ionizing radiation. Then the Gegenbauer polynomial becomes the Legendre
polynomial C

1/2
l (x) = Pl(x). The spherical caps may be viewed as generated by the

rotation of circular arcs of references [41, 28] around their axis of re�ection symmetry.
We go over �rst the main results for (Σ)-spherical caps on R3-spheres going through
the origin and then gives the main inversion formulas for Radon transforms on (Σ(j,ϵ))-
spherical caps.

4.1 Radon transform on (Σ)-spherical caps

A (Σ)-spherical cap is fully de�ned by a restriction on its radial distance range q < r < p
or equivalently by the restriction on the angular range 0 < γ < γ0, where cos γ0 = q/p.
When γ0 = π/2 (or q = 0), the spherical cap is the whole sphere going through the
origin O.

A function f(r,Ωk), where Ωk represents the azimuthal and co-latitude angles (ϕ, θ)

of k on S2, is transformed into f̂(p,Ωn) given by the integral

f̂(p,Ωn) =

∫
R3

r2 dr dΩk
p

r
δ (r − p (k · n)) f(r,Ωk). (4.1)

The Radon data depends on q. The plane (Pq) in which is the boundary circle of the
(Σ)-spherical cap lies, for given p, is at a distance q sin γ0 from the origin O.

Following section 2, the spherical components flm(r) of f(r,Ωk) are related to

f̂lm(p), the spherical components of f̂(p,Ωn) by

f̂lm(p)
q = 2π

∫ p

q

dr Pl

(
r

p

)
r flm(r). (4.2)
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This data is subjected to the following consistency conditions

• for l = 2l′, then∫ ∞

0

dp f̂ qlm(p)
1

p2k
= 0 for k = 1, 2, ..., l′ but

∫ ∞

0

dp f̂ qlm(p) ̸= 0, (4.3)

• for l = 2l′ + 1, then∫ ∞

0

dp f̂ qlm(p)
1

p2k+1
= 0 for k = 1, 2, ..., l′ but

∫ ∞

0

dp f̂ qlm(p)
1

p
̸= 0. (4.4)

The reconstruction formula for the spherical component which takes into account
the consistency conditions is simply

flm(r) = − 1

2π r

d2

dr2

∫ ∞

r

dp Pl

(
r

p

)
f̂ qlm(p). (4.5)

We may also verify that this reconstruction is independent of q. Using the closure
relation for the Legendre polynomials [30]∑

l∈Z

(2l + 1)Pl(k · n)Pl(r/p) = 2 δ

(
r

p
− (k · n)

)
. (4.6)

a closed form of the reconstruction formula may written down

f(r,Ωk) = −
∫
S2
dΩn

{
1

2π r

d2

dr2

∫ ∞

r

dp δ

(
r

p
− (k · n)

)
f̂(p,Ωn)

}
. (4.7)

This result has thus the nice form of a summation image in the sense of Barrett [42].

4.2 Radon transforms on (Σ(j,ϵ))-spherical caps

The equation of the (Σ(j,ϵ))-spherical caps in spherical coordinates is the same as given
by eqs. (3.1,3.2), with t = (n · k) = cos γ. The delta function kernel concentrated on
the (Σ(j,ϵ))-spherical caps is readily expressed by eqs. (3.4,3.5).

The equation linking the spherical components of f̂(τ,Ωn) to those of f(r,Ωk)is
now (see eq. (3.1))

τ f̂
(j,ϵ)
lm (τ)√

τ 2 + (−1)j−1
=

2π

∫ q(ϵj−1
√
τ2+(−1)j−1+ϵjτ)

q

ϵ dr(j,ϵ) Pl

(
ϵj

2τ

(
r(j,ϵ)
q

+ (−1)j
q

r(j,ϵ)

))
r(j,ϵ) flm(r(j,ϵ)).

(4.8)

The inverse formula reads

flm(r(j,ϵ)) =
ϵj

π r(j,ϵ)

d

dr(j,ϵ)

qr2(j,ϵ)
r2(j,ϵ) + (−1)j−1q2

d

dr(j,ϵ)
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∫ ϵj

2

(
r(j,ϵ)

q
+(−1)j q

r(j,ϵ)

)
(j−1)

dτ Pl

(
ϵj

2τ

(
r(j,ϵ)
q

+ (−1)j
q

r(j,ϵ)

))
τ f̂

(j,ϵ)
lm (τ)√

τ 2 + (−1)j−1
. (4.9)

A closed form for the inversion formula can be given as

f(r(j,ϵ)) = − 1

π

1

r(j,ϵ)

d

dr(j,ϵ)

qr2(j,ϵ)
r2(j,ϵ) + (−1)j−1q2

d

dr(j,ϵ)

∫
S2
dΩn

∫ ∞

ϵj

2

(
r(j,ϵ)

q
+(−1)j q

r(j,ϵ)

) dτ

δ

(
ϵj

2

(
r(j,ϵ)
q

+ (−1)j
q

r(j,ϵ)

)
− (k · n)

)
τ f̂ (j,ϵ)(τ,Ωn)√
τ 2 + (−1)j−1

. (4.10)

Here also it is not needed to have the Radon data for the full range of τ .

4.3 Possible applications to scattered radiation three-
dimensional imaging

With the inversion formulas of the Radon transforms on various spherical caps in
R3, three-dimensional imaging processes using scattered gamma rays can be proposed.
They are elaborations of the new Compton Scatter Tomography modalities in [47].

The question is how to generate spherical caps Radon data from the circular arcs
Radon data obtained before in two dimensions. One way to achieve this is to rotate the
pair source-detector around the re�ection symmetry axis. This operation amounts to
an azimuthal angular summation of the circular arc Radon data around its its re�ection
symmetry axis. Technically one may implement discretely this rotation by disposing
a very large number of alternate pairs of collimated source-detector all around the
circular rim (Cq) for each spatial angular orientation of the rotational symmetry axis
of the spherical cap. This is schematically shown in Fig. 1 below. An emission (resp.
detection) site S (resp. D) is represented by a blackened (resp. white) circular spot
on the spherical cap rim. A photon emitted at S will be scattered in the bulk of an
object at M under a scattering angle ω before being absorbed at D, see e.g. [47]. Of
course proper mechanical collimation is to be designed and build at S and D in order
for the photon path SMD to be in a plane containing the line SD and the rotational
symmetry axis of the spherical cap.

But evidently this operation does not produce the required spherical cap Radon
data. So there is a need to connect the measured integral data to the needed spherical
cap Radon data.

An analogous situation has occurred in cone-beam geometry computed tomography
(CT), which generates only ray data. One possible idea to invert the cone-beam CT
transform is to convert the ray data into three-dimensional Radon data and use the
related inverse Radon formula. However generating planar data from ray data does not
yield directly the planar Radon data. A "trick" found by Grangeat [43] shows a way
to make this transition. Thus in the present situation, a relation must be established
between the angular summation of circular arc Radon data and the spherical cap Radon
data.

To show how this conversion can be done, we choose a special spherical coordinate
system and compute the integral of a given function f(r, θ, ϕ) �rst along a meridian arc



Inversion of some spherical cap Radon transforms 97

O

S

M

D

ω

Figure 1: Arrangement of source-detector pairs on the circular rim of a spherical cap

of radius R in its arc measure Rdθ, i.e. ϕ �xed and 0 < θ < θ0 < π/2, then followed
by an ϕ-integration from 0 to π. The result is∫ π

0

dϕ

∫ θ0

0

dθ R f(R, θ, ϕ). (4.11)

This integral represents the summation of the Radon data on a circular arc over an
angle ϕ ∈ [0, π] in this particular spherical coordinate system.

φ

θ

O

M

x

y

z

θo

Figure 2: A R3−spherical cap in a special coordinate system

By rearranging the integrand, we see that this integral can be viewed as a spherical-
cap Radon data of the function g(R, θ, ϕ)∫ π

0

dϕ

∫ θ0

0

dθ R f(R, θ, ϕ) = R2

∫ π

0

dϕ

∫ θ0

0

sin θ dθ g(R, θ, ϕ), (4.12)

where

g(R, θ, ϕ) =
f(R, θ, ϕ)

R sin θ
. (4.13)
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Note that R sin θ0 is the radius of the circular rim of the spherical cap in Fig. 2.

Thus by rotating the pair of points S and D around their re�ection symmetry axis
by an angle π, we collect the spherical cap Radon data of the function g(r, θ, ϕ) and
not of f(r, θ, ϕ). Thus the inversion formulas of the �ve modalities quoted before give
the reconstruction of g(r, θ, ϕ) �rst. The sought function f(R, θ, ϕ) can be deduced
from eq. (4.13) in the special spherical coordinate system given above. In practice the
recovery of f from g is more complicated in an arbitrary coordinate system.

4.4 Inclusion of Compton kinematic factor, attenuation and
photometric e�ects

In real physical processes, a Compton kinematic factor, which includes the Compton
di�erential cross section, should be taken into account in the measurement data. It is
solely a function of the Compton scattering angle ω, which is related to the τ parameter
by

τ = cotω for j = 1, and τ = cscω for j = 2.

Therefore its inclusion as a factor P (τ), would not alter the invertibility of the Radon
transform on (Σ(j,ϵ)) in R2,3.

It is known that radiation �ux density, after traveling a distance d is weakened by
a factor 1/d2 in R3 due to dispersion in space. So for a radiation pencil emitted at
site S, scattered at site M and registered at site D, accounting for this e�ect means
inserting a factor (SM ×MD)−2 in the de�nition of the Radon transform (3.3), see
e.g. Fig. 1. Fortunately this product can be exactly evaluated and reexpressed as a
product of a function of r(j,ϵ) and a function of τ . The distances SM and MD can be
evaluated by applying the cosine theorem for triangles as

SM2
(j,ϵ) = q2 + r2(j,ϵ) − 2q r(j,ϵ) cos(ψ(j,ϵ) − γ)

MD2
(j,ϵ) = q2 + r2(j,ϵ) − 2q r(j,ϵ) cos(ψ(j,ϵ) + γ),

where ψ(j,ϵ) = (π/2 δj1 + γ0 δj2). Their product can be re-expressed as a product of a
function of r(j,ϵ) and a function of τ as

SM2
(j,ϵ)MD2

(j,ϵ) = (q2 − r2(j,ϵ))
2 (1 + (−1)j−1τ−2)

A quick check shows that the invertibility of the transform via circular harmonic com-
ponents remains valid, since the factor in τ can be absorbed in the Radon data and
the factor in r(j,ϵ) may be used to rede�ne a new input function. Moreover in practice,
since real objects to be investigated are represented by non-negative integrable func-
tions with compact support, the parameter q may be adjusted so that no divergence
arises in the integrals de�ning the Radon transforms.

However the e�ect of radiation attenuation in matter, even if it is assumed to
be uniform (e.g.with a constant linear attenuation coe�cient), cannot �t into this
inversion scheme, as already pointed out in [28, 41]. Then approximate compensation
for non-uniform attenuation is to be worked out.
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Conclusion

In this article, explicit inversion formulas for Radon transforms on spherical caps are
derived. They generalize and complement inversion formulas already known for Radon
transforms on spheres centered on planes or spheres. The main idea is to use the
spherical harmonic components and the Funck-Hecke theorem which allows to get a
generalized Gegenbauer transform. A further change of variables and functions brings
turns this Gegenbauer transform back to a standard form known for the Radon trans-
form on spheres passing a �xed point for which an inverse formula can be written down.
Five di�erent cases are studied. In R3, they suggest potential new imaging processes
based on Compton scattering of ionizing radiation. Of course it would be necessary
to investigate in depth further mathematical properties of these Radon transforms in
order to secure their working in future scanning devices.
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