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FOR PARAMETER IDENTIFICATION IN ELLIPTIC SYSTEM
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Abstract We propose a restarting technique for the nonlinear conjugate gradient
(NCG) method in solving the inverse problem of parameter identi�cation in ellip-
tic systems. The technique can enhance the performance of the NCG method in a
certain generic situation. We conduct extensive numerical experiments to compare
the performance of �ve well-known conjugate gradient schemes by incorporating the
restarting technique. Numerical results show the e�ciency and stable performance of
the restarted NCG schemes. The smoothing property of the proposed method is also
investigated, which could be employed in the multigrid solver for inverse problems.
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1 Introduction

This paper is concerned with the inverse problem of identifying distributed parameters
in partial di�erential equation (PDE) systems. The inverse problem of this kind is of
crucial importance in many areas of science and technology, and we refer to [1, 3, 6, 9,
13, 14, 15, 16, 18] and the references therein for related studies. Throughout we shall
take the following model problem for our current study. Consider the elliptic PDE
system

−∇ · (q(x)∇u(x)) =f(x) in Ω, (1.1)

u(x) =0 on Γ, (1.2)

where Ω is a bounded Lipschitz domain in Rd, d = 1, 2 or 3, Γ := ∂Ω, q is a positive
measurable function and f ∈ H−1(Ω). q(x) represents the distributed parameter,
whereas f(x) represents a given source term. The inverse problem is to recover q from
measurements zδ of the state variable u , or∇zδ of the state variable gradient∇u. Here
and in the following, δ stands for the noise level in the measurement data. This problem
arises in many industrial applications, e.g., in the �uid �ow of a one-phase reservoir,
it describes the procedure of identifying the inaccessible absolute permeability q of the
underground medium by measuring u or ∇u; we refer to [1, 3, 6, 18] for more relevant
discussion.

1Corresponding Author. Email: lishanqiang@gmail.com
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In this paper, we shall mainly consider the numerical reconstruction algorithms for
the parameter identi�cation problem described above. Many reconstruction schemes
have been developed and investigated in the literature, and among those methods the
output least-squares formulation with Tikhonov regularization is one of the most stable
and reliable approaches. But the resulting PDE-constrained optimization system is
nonlinear and highly ill-conditioned, and hence there is still a lot of ongoing research on
how to solve the large-scale system e�ectively and e�ciently. The classical conjugate
gradient (CG) method initiated by Hestenes and Stiefel in their seminal paper [11]
has been widely used in solving quadratic optimization problems of high dimensions.
Later, the CG method was adapted to solve non-quadratic optimization problems, and
we would like to mention �ve di�erent schemes including the Fletcher-Reeves method
[8], the Polak-Ribi�ere method [17], the Conjugate Descent method [7] and the Dai-Yuan
method [4].

In this paper, we propose an enhancement technique for the nonlinear conjugate
gradient method in solving the parameter identi�cation problem within the framework
of output least-squares formulation. More speci�cally, we �rst reformulate the param-
eter identi�cation problem into a PDE-constrained optimization problem. Then the
Gateaux derivatives of the cost functional at all directions are computed for the gradi-
ent direction by solving the direct and adjoint PDEs. Nonlinear CG schemes are used
to generate the conjugate gradient direction based on the gradient knowledge. If the
conjugate gradient direction is a descent direction, we update the current estimated
parameter along the conjugate gradient direction, otherwise we update the current it-
eration along the negative gradient direction and restart the NCG scheme. Inexact line
search using a simple backtracking rule is used in the updating step for this nonlinear
problem. The idea of our new algorithms tracks back to the work of Martin Hanke,
who discussed in detail how to employ the standard conjugate gradient type methods
for the classical linear inverse problem of the Fredholm integral equations of the �rst
kind with non-degenerate kernel functions in [10]. But application of the CG scheme
for the nonlinear inverse problem is not so natural as that for its linear counterpart.
There is in general no normal equations and one has to apply the CG method in the
optimization framework. But as is well known in the quadratic optimization theory
that the conjugate gradient direction may not be a descent direction, and in that case,
line search along it might fail in the optimization setting, which causes the CG iteration
to halt in its midway. The restarting technique we propose in the present work can
overcome this halt problem e�ectively and e�ciently.

Finally, we would like to remark that the numerical technique developed in the
present paper can also be applied to other inverse problems of identifying conductivities
in EIT, and medium parameters in acoustic and electromagnetic scattering etc.; see,
e.g. [2, 19, 20].

The rest of the paper is organized as follows. In Section 2, we present the re-
formulation of the inverse problem as a PDE-constrained optimization problem and
then derive the gradient formula for the cost functional. In Section 3, we propose
our restarted nonlinear conjugate gradient algorithm (RNCG). Section 4 is devoted to
numerical experiments. Our paper is concluded in Section 5.
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2 Mathematical formulation

In this section, we brie�y describe the PDE-constrained optimization formulations of
the parameter identi�cation problem, together with the corresponding �nite element
discretization. We also derive the explicit formulae for the Gateaux derivatives of the
discrete cost functionals on the �nite element space. As for the theoretical details
behind these formulations including the continuity of the discrete cost functionals,
existence of minimizers and weak convergence analysis etc., we refer to [3, 12, 16, 21].

We �rst �x some notations for our subsequent use. In order to derive the approxi-
mate discrete problem by the �nite element method, we �rst triangulate the polyhedral
domain Ω with a regular triangulation T h of simplicial elements, namely intervals in
one dimension, triangles in two dimensions and tetrahedra in three dimensions. Then
the �nite element space Vh is de�ned to be the space consisting of continuous and

piecewise linear functions over the triangulation T h, and
◦
V h is a subspace of Vh with

all functions vanishing on the boundary ∂Ω. Henceforth, the regularization parameter
is always represented as γ and the admissible parameter set is given as

K = {q ∈ H1(Ω); ∥q∥H1(Ω) <∞ and 0 < α1 ≤ q(x) ≤ α2 a.e. in Ω}, (2.1)

where α1 and α2 are two positive constants. Let {xi}Ni=1 be the set of all the nodal
points of the triangulation T h, then the constrained subset K is approximated by

Kh = {vh ∈ Vh;α1 ≤ vh(x) ≤ α2, ∀x ∈ Ω}. (2.2)

With the above preparations, we are in a position to present the mathematical
formulations of the parameter identi�cation problem associated with the PDE system
(1.1)�(1.2). We �rst consider the case that the measured data is ∇zδ of ∇u on Ω.
By the output least-squares method combined with the Tikhonov regularization, the
inverse problem can be formulated as the following PDE-constrained minimization
problem

min
q∈K

J(q) =
1

2

∫
Ω

q|∇v −∇zδ|2 dx+ γ

∫
Ω

|∇q|2 dx (2.3)

subject to q ∈ K and v ≡ v(q) ∈ H1
0 (Ω) satisfying∫

Ω

q∇v · ∇ϕ dx =

∫
Ω

fϕ dx for all ϕ ∈ H1
0 (Ω). (2.4)

Next, by applying the �nite element discretization, the discrete constrained minimiza-
tion problem corresponding to (2.3)�(2.4) is given as follows,

min
qh∈Kh

Jh(qh) =
1

2

∫
Ω

qh|∇vh −∇zδ|2dx+ γ

∫
Ω

|∇qh|2 dx (2.5)

subject to qh ∈ Kh and vh ≡ vh(qh) ∈
◦
V h satisfying∫

Ω

qh∇vh · ∇ϕh dx =

∫
Ω

fϕh dx for all ϕh ∈
◦
V h. (2.6)
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For the subsequent use, we derive the gradient of the functional Jh(qh) in (2.5). It can
be shown that for each qh ∈ Kh, the Gateaux derivative of vh(qh) with respect to any

ph ∈ Vh, namely v
′
h(qh)ph ∈

◦
V h, satis�es∫

Ω

qh∇v′h(qh)ph · ∇ϕh dx = −
∫
Ω

ph∇vh(qh) · ∇ϕh dx for all ϕh ∈
◦
V h. (2.7)

Next, we introduce an adjoint equation of �nding wh ∈
◦
V h such that∫

Ω

qh∇wh · ∇ϕh dx =

∫
Ω

qh∇(vh − zδ) · ∇ϕh dx for all ϕh ∈
◦
V h. (2.8)

By combining (2.7) and (2.8), the Gateaux derivative of the functional Jh(qh) with
respect to ph can be further formulated as follows

J ′
h(qh)ph

=
1

2

∫
Ω

ph|∇vh −∇zδ|2dx+
∫
Ω

qh(∇vh −∇zδ) · ∇v′h(qh)phdx+ 2γ

∫
Ω

∇qh · ∇ph dx

=
1

2

∫
Ω

ph|∇vh −∇zδ|2dx+
∫
Ω

qh∇v′h(qh)ph · ∇whdx+ 2γ

∫
Ω

∇qh · ∇ph dx

=
1

2

∫
Ω

ph(∇vh −∇zδ)2 dx−
∫
Ω

ph∇vh · ∇wh dx+ 2γ

∫
Ω

∇qh · ∇ph dx , (2.9)

where we have taken ϕh = wh in (2.7) and ϕh = v′h(qh)ph in (2.8), and then plugged
them into the �rst and second equalities in (2.9).

Next, we consider the case that the measured data is zδ of u on Ω. Similar to the
�rst case, the inverse problem can be formulated as the following PDE-constrained
minimization problem

min
q∈K

J(q) =
1

2

∫
Ω

|v − zδ|2 dx+ γ

∫
Ω

|∇q|2 dx (2.10)

subject to q ∈ K and v ≡ v(q) ∈ H1
0 (Ω) satisfying∫

Ω

q∇v · ∇ϕ dx =

∫
Ω

fϕ dx for all ϕ ∈ H1
0 (Ω) . (2.11)

By applying the �nite element discretization, the discrete counterpart of (2.10)�(2.11)
is then given by

min
qh∈Kh

Jh(qh) =
1

2

∫
Ω

|vh − zδ|2dx+ γ

∫
Ω

|∇qh|2 dx (2.12)

subject to qh ∈ Kh and vh ≡ vh(qh) ∈
◦
V h satisfying∫

Ω

qh∇vh · ∇ϕh dx =

∫
Ω

fϕh dx for all ϕh ∈
◦
V h . (2.13)

We also introduce the following adjoint equation: Find wh ∈
◦
V h such that∫

Ω

qh∇wh · ∇ϕh dx =

∫
Ω

(uh − zδ)ϕh dx for all ϕh ∈
◦
V h. (2.14)
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By using (2.13) and (2.14), the Gateaux derivative of the functional Jh(qh) in (2.12)
with respect to ph can be given as

J ′
h(qh)ph =

∫
Ω

(vh − zδ)v′h(qh)ph dx+ 2γ

∫
Ω

∇qh · ∇ph dx

=

∫
Ω

qh∇wh · ∇v′h(qh)ph dx+ 2γ

∫
Ω

∇qh · ∇ph dx

= −
∫
Ω

ph∇wh · ∇vh dx+ 2γ

∫
Ω

∇qh · ∇ph dx (2.15)

where we have taken ϕh = wh in (2.13) and ϕh = v′h(qh)ph in (2.14), and then plugged
them into the �rst and second equalities in (2.15).

3 RNCG methods for parameter identi�cation

In this section, we present the restarted NCG method in treating the concerned inverse
problem. In general, the conjugate gradient type method for a minimization problem
with a cost functional Jh(q) has the following form:

qk+1 = qk + αkdk, (3.1)

where αk is the step length and dk is the search direction of the form

dk =

{
−gk, for k = 0;
−gk + βkdk−1, for k > 0.

(3.2)

In (3.2), gk denotes the gradient direction of the cost functional ∇Jh, and it can be
represented by a linear combination of the basis functions of Vh with the weights being
the Gateaux derivatives along each basis function. Moreover, in (3.2), βk is such chosen
that dk becomes the k-th conjugate gradient when the cost functional is quadratic and
the line search is exact. Variants of conjugate gradient methods di�er in the criterion
of how to select βk (k ≥ 1). Five well-known schemes for βk (k ≥ 1) are given as
follows:

βHSk =
gTk (gk − gk−1)

dTk−1(gk − gk−1)
, (Hestenes-Stiefel [11]) (3.3)

βFRk =
∥gk∥2

∥gk−1∥2
, (Fletcher-Reeves [8]) (3.4)

βFRk =
gTk (gk − gk−1)

∥gk−1∥2
, (Polak-Ribi�ere [17]) (3.5)

βCDk =
∥gk∥2

−dTk−1gk−1

, (Conjugate Descent [7]) (3.6)

βDYk =
∥gk∥2

dTk−1(gk − gk−1)
. (Dai-Yuan [4]) (3.7)

In the following we formulate the initial version of the NCG algorithm for the
parameter identi�cation problem in Algorithm 1.
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Algorithm 1 Nonlinear Conjugate Gradient

k : = 0;
q0h := initial value;
g0 : = ∇Jh(q0h);
d0 : = −g0;
while (stopping rule) %NCG iterations

Choose αk > 0 s.t. αk∥∇Jh∥∞ = κ∥qh∥∞;
while J(qkh + αkdk) ≥ J(qkh)
αk := αk/2;

endwhile
qk+1
h := qkh + αkdk;
gk+1 := ∇Jh(qk+1

h );
βk+1 := one of the criteria (3.3)�(3.7);
dk+1 :=−gk+1 + βk+1dk;
k := k + 1;

end

One critical drawback of the NCG algorithm is that the conjugate gradient di-
rection may not be a descent direction for the cost functional Jh(qh), which causes the
innermost while loop to loop forever. The remedy we propose is to restart the CG
algorithm when the step length αk is smaller than a threshold value ε > 0, i.e., we
replace the current conjugate gradient dk with the current negative gradient −gk as
the initial guess and restart the NCG algorithm. This suggests the restarted nonlinear
conjugate gradient algorithm (RNCG), which is formulated in Algorithm 2.

It is remarked that we will terminate the program when it reaches the maximum
iteration number or the relative error between the successive two iterates, namely
∥qk − qk−1∥/∥qk∥, is less than 10−16 for the purpose of comparison. Other stopping
rules, such as monitoring the absolute di�erence of the consecutive iterates ∥qk−qk−1∥,
can be also employed in practice. To avoid the denominators in (3.3)�(3.7) tending to
zero, we add a small numbers 10−6 with the same sign as that of the denominators
in the denominators. We observe that Hestenes-Stiefel, Conjugate Descent and Dai-
Yuan methods will stagnate during the iteration without this safeguard trick. For
the line search step, we take the simple backtracking criterion, i.e., reducing the step
size by a half if the cost functional is not su�ciently decreased (i.e., the step size is
overemphasized). And the initial step size for αk is chosen such that the magnitude
of ∥αk∇Jh∥∞ is of the same order as that of ∥qh∥∞. This is to make the decrease
comparable to the magnitude of the current guess.

4 Numerical experiments

For numerical illustrations of our proposed methods for the parameter identi�cation
problem, we implemented the �ve schemes of the nonlinear conjugate gradient algo-
rithms in Matlab and conducted experiments on a desktop with dual cores of 3.1GHz
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Algorithm 2 Restarted Nonlinear Conjugate Gradient

k : = 0;
q0h := initial value;
g0 : = ∇Jh(q0h);
d0 : = −g0;
while (stopping rule) %NCG iterations

Choose αk > 0 s.t. αk∥∇Jh∥∞ = κ∥qh∥∞
while J(qkh + αkdk) ≥ J(qkh)
αk := αk/2;
if αk < ε
dk := −gk;
Choose αk > 0 s.t. αk∥∇Jh∥∞ = κ∥qh∥∞
while J(qkh + αkdk) ≥ J(qkh)
αk := αk/2;

endwhile
break;

endif
endwhile
qk+1
h := qkh + αkdk;
gk+1 := ∇Jh(qk+1

h );
βk+1 := one of the criteria (3.3)�(3.7);
dk+1 :=−gk+1 + βk+1dk;
k := k + 1;

endwhile
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CPUs.
The test problem is a parameter identi�cation problem of elliptic type in two di-

mensions
−∇ ·

(
q(x, y)∇u(x, y)

)
= f(x, y) (x, y) ∈ (0, 1)× (0, 1). (4.1)

Without loss of generality, the boundary condition are always assumed to be of
homogeneous Dirichlet type.

The parameters related in the algorithm are chosen as follows. The lower and upper
bounds α1 and α2 in the constraint set Kh are taken to be 0.5 and 20, respectively. We
let the threshold value ε = 10−5. The initial guess q0h is set to be a constant function 10
for both test problems, which is far away from the exact parameters. We add uniform
random errors to the exact solution u or its gradient ∇u to generate the observed data
zδ or ∇zδ in the following way,

zδ = u(1 + δr) or ∇zδ = ∇u(1 + δr).

where δ represents the random error level and r denotes a uniforma random number
between −1 and 1 pointwise. We choose the noise level δ to be 0.01, 0.05 or 0.1,
which is common in engineering applications. The regularization parameter γ is chosen
following the Morozov discrepancy rule in accordance with the error level and di�erent
test problems.

We divide the region (0, 1)×(0, 1) into 32×32 equal squares and then further divide
these squares through their diagonal into two triangles and the �nite element mesh size
is
√
2/32.
For the parameter identi�cation problems when ∇zδ is available, the maximum

number of the iterations for all the algorithms is taken to be 100, while for the problems
when zδ is available, the maximum number is taken to be 200.

In the following experiments we illustrate the convergence of the k-th iterate qk to
the true parameter qexact for all the algorithms by plotting the discrete L

2 norm of the
error, i.e. ∥qk − qexact∥ for the increasing iteration number. The discrete L2 norm of
current and previous iterates, i.e. ∥qk − qk−1∥ for the increasing iteration number are
also plotted for comparison.

4.1 RNCG algorithm for parameter identi�cation

Example 1. (H1-data case) We take the exact coe�cient q(x, y) and state variable
u(x, y) in (4.1) and observed data ∇zδ(x, y) as follows:

q(x, y) = 3 + 32x(1− x)y(1− y),

u(x, y) = sin(πx) sin(πy),

∇zδ(x, y) = (1 + δr(x, y))∇u(x, y),

and the right hand side function f(x, y) is computed through (4.1) using u(x, y) and
q(x, y). Here we use the RNCG algorithm with the Fletcher-Reeves scheme as an
example. Figure 1 shows the exact parameter qexact(x, y) and the identi�ed parameter
qh(x, y) when the error levels are 0.01, 0.05 and 0.10 with the regularization parameter
γ = 0.003, 0.02 and 0.026, respectively, determined by the discrepancy principle. Figure
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2 shows the convergence history curve along the iterations with respect to di�erent noise
levels. We see that the method converges quite fast and stable for di�erent level of
noises and the pro�le of the parameter can be well approximated within the �rst 100
iterations except for those points on the boundary or where the gradients of u are nearly
zero. The convergence history curve of the L2 norm of the error between the current
iterate qk and the exact coe�cient qexact level o� in the end which indicates numerically
the convergence of the RNCG algorithm. Even after adding white noise up to ten
percents, the identi�ed parameter still has the correct pro�le as the exact one. We �nd
that restarting is triggered at about 10�20 iterations, and then happens from time to
time with increasing frequency in particular when noise level is small, namely δ = 0.01.
Similar phenomena are observed for the L2 measurement case in the next example. At
the same time, we implements the other schemes for δ = 0.01 with the same parameter
setting, we list the identi�ed parameters in Figure 3. From numerical results, we �nd
that the iterates using Hestenes-Stiefel and Conjugate Descent methods fail to delineate
the parameter due to the trap of local minimum. Both Hestenes-Stiefel and Conjugate
Descent methods stagnate after the �rst 10 to 20 iterations and the convergence curves
level o� in a premature stage. While the iterates using Polak-Ribi�ere and Dai-Yuan
methods converge to the exact solution quite stable. We plot the convergence history
for the �ve schemes in Figure 4.
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Figure 1: From left to right and then from up to down: the exact parameter qexact,
identi�ed parameters qh when δ = 0.01, 0.05, 0.10.
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Figure 2: ∥qk − qexact∥L2 versus iterations with di�erent noise level. Logarithmic scale
on the vertical axis.
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Figure 3: From left to right and then from up to down: identi�ed parameters qh
when δ = 0.01 with Hestenes-Stiefel, Polak-Ribi�ere, Conjugate Descent and Dai-Yuan
schemes.
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Figure 4: Convergence history for �ve NCG schemes.

Example 2. (L2-data case) We take the exact coe�cient q(x, y) and state variable
u(x, y) in (4.1) and observed data zδ(x, y) as follows:

q(x, y) = 7 + 6x2y(1− y),

u(x, y) = sin(πx) sin(πy),

zδ(x, y) = (1 + δr(x, y))u(x, y),

and the right hand side function f(x, y) is computed through (4.1) using u(x, y) and
q(x, y). The identi�cation process using the L2-data and the Fletcher-Reeves method
is much slower than that using the H1-data case, but the identi�ed parameters is
still satisfactory, with similar pro�les with the exact one as shown in Figure 5. The
regularization parameters are chosed 1.1×10−7, 2.3×10−7 and 3.8×10−7 for δ = 0.01,
0.05 and 0.1, respectively, from the discrepancy rule. Here the �delity term of the cost
functional is rather small compared with the regularization term, so the regularization
parameters di�er little compared with theH1 data case. Figure 6 shows the convergence
history for di�erent noise level.

Note that with the increase of the noise in the measurement data, the ill-posedness
of the parameter identi�cation problems could be mitigated due to the noise in the
data. In such a way, one could achieve robustness with respect to a wide range of noise
levels. For inverse problems with large noise, readers may refer to [5] and the references
therein.

4.2 Smoothing property of RNCG algorithm

RNCG methods have similar smoothing property as the Uzawa method, which makes
them suitable to be potential smoothers in the multigrid solver for the inverse problems
[16].
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Figure 5: From left to right and then from up to down: the exact parameter qexact,
identi�ed parameters qh when δ = 0.01, 0.05, 0.10.
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on the vertical axis.
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As we will see, the smoothing property of the inverse problem solver depends highly
on the regularization term and the regularization parameter. Here we use the H1-semi-
norm as the regularization term in our example, which acts as the role of the inverse of
a Laplace operator to force the error to be smooth. But on the other hand, the regu-
larization parameter plays a role on determining how strong the smoothing property is.
More precisely, the smaller the regularization parameter, the less smoothing property
the gradient methods have. If the regularization parameter is too small, the smoothing
property can be totally superseded by the nonlinearity of the cost functional and thus
the resulting errors may still oscillate wildly.

Here we demonstrate the smoothing property of the RNCG algorithm for the pa-
rameter identi�cation problems by an example. We take the test problem (4.1) with
the exact parameter qe(x, y) = 7 + 6x2y(1− y).

We deliberately set initial guesses

q
(0)
3 (x, y) = qe(x, y) + 2 sin(2jx) sin(2ky),

u(x, y) = sin(πx) sin(πy)

where j, k are used to control the high or low frequency mode errors in the initial
guess. The observed data ∇z = ∇u, i.e., with no noise in the data. We add a small
regularization parameter γ = 10−4. Figure 7 presents the damping process of the
high frequency modes when j = 7 and k = 7 by using the RNCG algorithm with the
Fletcher-Reeves updating scheme, and the iteration processes of the damping process
of the low-median frequency modes when j = 3 and k = 3 by the same method. We
see clearly the high frequency mode in the initial guess could be quickly damped in
the �rst two iterations while the low frequency mode decays much slower. Therefore,
the RNCG method is shown numerically a good candidate for the multi grid solver for
inverse problems.

5 Concluding remarks

E�cient RNCG methods are proposed in this work to solve a model nonlinear inverse
problem of parameter identi�cation. The proposed methods can also be used to the
identi�cation of the source term, initial condition, or radiative coe�cient and the cor-
responding inverse problems in parabolic systems, which will be studied in the future.
The smoothing property of the conjugate gradient method suggests us to utilize the
NCG algorithm as a smoother component in the multigrid setting [16]. The opti-
mal convergence rate of the multigrid-like method will provide an e�cient and robust
numerical method for the parameter identi�cation problem.
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Figure 7: Illustration of the smoothing property of the RNCG algorithm in two di-
mension. Top from left to right: initial guess and the �rst two RNCG iterates for high
frequency mode j = k = 7. Bottom from left to right: the initial guess and the tenth,
twentieth RNCG iterates for low-median frequency mode j = k = 3.



76 Jingzhi Li, Shanqiang Li, Hongyu Liu

References

[1] H. T. Banks and K. Kunisch, Estimation techniques for distributed parameter systems, Boston :
Birkh�auser, 1989.

[2] G. Bao and P. Li, Inverse medium scattering problems for electromagnetic waves, SIAM J. Appl.
Math., 65 (2005), pp. 2049�2066.

[3] Z. Chen and J. Zou, An augmented Lagrangian method for identifying discontinuous parameters

in elliptic systems, SIAM J. Control Optim., 37 (1999), pp. 892�910.

[4] Y. Dai and Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence

property, SIAM J. Optimization, 10 (1999), pp. 177�182.

[5] H. Egger, Regularization of inverse problems with large noise, Journal of Physics: Conference
Series, 124 (2008), p. 012022.

[6] H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems, Dordrecht ; Boston
: Kluwer Academic Publishers, 1996.

[7] R. Fletcher, Practical Method of Optimization, Vol I: Unconstrained Optimization, Wiley, New
York, 2 ed., 1987.

[8] R. Fletcher and C. Reeves, Function minimization by conjugate gradients, Comput. J., 7 (1964),
pp. 149�154.

[9] R. B. Guenther, R. Hudspeth, W. McDougal, and J. Gerlach, Remarks on parameter identi�ca-

tion. I, Numer. Math., 47 (1985), pp. 355�361.

[10] M. Hanke, Conjugate gradient type methods for ill-posed problems, Harlow, Essex, England :
Longman Scienti�c & Technical ; New York : Wiley, 1995.

[11] M. Hestenes and E. Stiefel, Method of conjugate gradient for solving linear system, J. Res. Nat.
Bur. Stand., 49 (1952), pp. 409�436.

[12] Y. L. Keung and J. Zou, Numerical identi�cations of parameters in parabolic systems, Inverse
Problems, 14 (1998), pp. 83�100.

[13] K. Kunisch and W. Ring, Regularization of nonlinear ill-posed problems with closed operators,
Num. Funct. Anal. and Optimiz., 14 (1993), pp. 389�404.

[14] J. Li, H. Liu, and J. Zou, Multilevel linear sampling method for inverse scattering problems,
SIAM J. Sci. Comput., 30 (2008), pp. 1228�1250.

[15] J. Li, J. Xie, and J. Zou, An adaptive �nite element reconstruction of distributed �uxes, Inverse
Problems, 27 (2011), p. 075009 (25pp).

[16] J. Li and J. Zou, A multilevel model correction method for parameter identi�cation, Inverse
Problems, 23 (2007), pp. 1759�1786.

[17] B. Polak and G. Ribi�ere, Note sur la convergence des m�ethodes de directions conjugu�ees, Rev.
Fran. Informat. Rech. Op�er., 16 (1969), pp. 35�43.

[18] W. W.-G.Yeh, Review of parameter identi�cation procedures in groundwater hydrology: The

inverse problem, Water Resources Research, 22 (1986), pp. 95�108.

[19] G. Uhlmann, Electrical impedance tomography and Calderon's problem, Inverse Problems, 2009,
25, p. 123011.



Restarted Nonlinear Conjugate Gradient Method for Parameter Identi�cation... 77

[20] G. Uhlmann, Inside Out: Inverse Problems and Applications, Cambridge University Press, Cam-
bridge, 2003

[21] J. Zou, Numerical methods for elliptic inverse problems, Int. J. Comput. Math., 70 (1998),
pp. 211�232.

Jingzhi Li Shanqiang Li
Faculty of Science, College of Automation,
South University of Science Harbin Engineering University,
and Technology of China, Harbin 150001, Heilongjiang, P. R. China
Shenzhen 518055, P. R. China, and Department of Mathematics,
Email: li.jz@sustc.edu.cn; Harbin University of Science and Technology,

Harbin 150080, Heilongjiang, P. R. China
Hongyu Liu Email: lishanqiang@gmail.com
Department of Mathematics,
Harbin University of Science and Technology,
Harbin 150080, Heilongjiang, P. R. China,
and School of Mathematics and Statistics,
Central South University, Changsha,
Hunan 410075, P. R. China.
Received 11 Feb 2013, in �nal form 25 Mar 2013


	EJMCA_1_1_2013_foronline 1
	EJMCA_1_1_2013_foronline 3
	EJMCA_1_1_2013_foronline 62
	EJMCA_1_1_2013_foronline 63
	EJMCA_1_1_2013_foronline 64
	EJMCA_1_1_2013_foronline 65
	EJMCA_1_1_2013_foronline 66
	EJMCA_1_1_2013_foronline 67
	EJMCA_1_1_2013_foronline 68
	EJMCA_1_1_2013_foronline 69
	EJMCA_1_1_2013_foronline 70
	EJMCA_1_1_2013_foronline 71
	EJMCA_1_1_2013_foronline 72
	EJMCA_1_1_2013_foronline 73
	EJMCA_1_1_2013_foronline 74
	EJMCA_1_1_2013_foronline 75
	EJMCA_1_1_2013_foronline 76
	EJMCA_1_1_2013_foronline 77



