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Abstract We consider the inverse boundary value problem for the Schr�odinger equa-
tion at �xed energy with boundary measurements represented as the impedance bound-
ary map (or Robin-to-Robin map). We give formulas and equations for �nding (gener-
alized) scattering data for the aforementioned equation from boundary measurements
in this impedance representation. Combining these results with results of the inverse
scattering theory we obtain e�cient methods for reconstructing potential from the
impedance boundary map. To our knowledge, results of the present work are new
already for the case of Neumann-to-Dirichlet map.
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1 Introduction

We consider the equation

−∆ψ + v(x)ψ = Eψ, x ∈ D, E ∈ R, (1.1)

where
D is an open bounded domain in Rd, d ≥ 2,

with ∂D ∈ C2,
(1.2)

v ∈ L∞(D), v = v̄. (1.3)

Equation (1.1) can be considered as the stationary Schr�odinger equation of quantum
mechanics at �xed energy E. Equation (1.1) at �xed E arises also in acoustics and
electrodynamics.

Following [19], [26], we consider the impedance boundary map M̂α = M̂α,v(E)
de�ned by

M̂α[ψ]α = [ψ]α−π/2 (1.4)

for all su�ciently regular solutions ψ of equation (1.1) in D̄ = D ∪ ∂D, where

[ψ]α = [ψ(x)]α = cosαψ(x)− sinα
∂ψ

∂ν
|∂D(x), x ∈ ∂D, α ∈ R (1.5)
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and ν is the outward normal to ∂D. Under assumptions (1.2), (1.3), in Lemma 3.2 of
[26] it was shown that there is not more than a countable number of α ∈ R such that
E is an eigenvalue for the operator −∆+ v in D with the boundary condition

cosαψ|∂D − sinα
∂ψ

∂ν
|∂D = 0. (1.6)

Therefore, for any �xed E we can assume that for some �xed α ∈ R

E is not an eigenvalue for the operator −∆+ v in D

with boundary condition (1.6)
(1.7)

and, as a corollary, M̂α can be de�ned correctly.
We consider M̂α = M̂α,v(E) as an operator representation of all possible boundary

measurements for the physical model described by (1.1). We recall that the impedance
boundary map M̂α is reduced to the Dirichlet-to-Neumann(DtN) map if α = 0 and
is reduced to the Neumann-to-Dirichlet(NtD) map if α = π/2. The map M̂α can be
called also as the Robin-to-Robin map.

As in [26], we consider the following inverse boundary value problem for equation
(1.1).

Problem 1.1. Given M̂α for some �xed E and α, �nd v.
This problem can be considered as the Gel'fand inverse boundary value problem

for the Schr�odinger equation at �xed energy (see [18], [36]). Note that in the initial
Gel'fand formulation energy E was not yet �xed and boundary measurements were
considered as an operator relating ψ|∂D and ∂ψ

∂ν
|∂D for ψ satisfying (1.1).

Problem 1.1 for E = 0 can be considered also as a generalization of the Calderon
problem of the electrical impedance tomography (see [13], [36]).

Note also that Problem 1.1 can be considered as an example of ill-posed problem:
see [4], [31] for an introduction to this theory.

Problem 1.1 includes, in particular, the following questions: (a) uniqueness, (b)
reconstruction, (c) stability.

Global uniqueness theorems and global reconstruction methods for Problem 1.1
with α = 0 (i.e. for the DtN case) were given for the �rst time in [36] in dimension
d ≥ 3 and in [10] in dimension d = 2.

Global stability estimates for Problem 1.1 with α = 0 were given for the �rst time
in [1] in dimension d ≥ 3 and in [45] in dimension d = 2. A principal improvement of
the result of [1] was given recently in [44] (for E = 0). Due to [32] these logarithmic
stability results are optimal (up to the value of the exponent). An extention of the
instability estimates of [32] to the case of non-zero energy as well as to the case of
Dirichlet-to-Neumann map given on the energy intervals was obtained in [24]. An
extention of stability estimates of [44] to the energy dependent case was given recently
in [27]. Instability estimates complementing stability results of [27] were obtained in
[25].

Note also that for the Calderon problem (of the electrical impedance tomography)
in its initial formulation the global uniqueness was �rstly proved in [51] for d ≥ 3 and in
[35] for d = 2. In addition, for the case of piecewise constant or piecewise real analytic
conductivity the �rst uniqueness results for the Calderon problem in dimension d ≥ 2



Reconstruction of a potential from the impedance boundary map 7

were given in [15], [28]. Lipschitz stability estimate for the case of piecewise constant
conductivity was proved in [2] and additional studies in this direction were ful�lled in
[48].

It should be noted that in most of previous works on inverse boundary value prob-
lems for equation (1.1) at �xed E it was assumed in one way or another that E is not
a Dirichlet eigenvalue for the operator −∆+ v in D, see [1], [32], [36], [44]-[49]. Nev-
ertheless, the results of [10] can be considered as global uniqueness and reconstruction
results for Problem 1.1 in dimension d = 2 with general α.

Global stability estimates for Problem 1.1 in dimension d ≥ 2 with general α were
recently given in [26].

In the present work we give formulas and equations for �nding (generalized) scat-
tering data from the impedance boundary map M̂α with general α. Combining these
results with results of [21], [23], [35], [37]-[39], [41]-[43], we obtain e�cient reconstruc-
tion methods for Problem 1.1 in multidimensions with general α. To our knowledge
these results are new already for the NtD case.

In particular, in the present work we give the �rst mathematically justi�ed approach
for reconstructing coe�cient v from boundary measurements for (1.1) via inverse scat-
tering without the assumption that E is not a Dirichlet eigenvalue for −∆ + v in D.
In addition, numerical e�ciency of related inverse scattering techniques was shown in
[3], [9], [11], [12]; see also [8].

De�nitions of (generalized) scattering data are recalled in Section 2. Our main
results are presented in Section 3. Proofs of these results are given in Sections 4, 5
and 6.

2 Scattering data

Consider the Schr�odinger equation

−∆ψ + v(x)ψ = Eψ, x ∈ Rd, d ≥ 2 (2.1)

where

(1 + |x|)d+εv(x) ∈ L∞(Rd) (as a function of x), for some ε > 0. (2.2)

For equation (2.1) we consider the functions ψ+ and f of the classical scattering theory
and the Faddeev functions ψ, h, ψγ, hγ (see, for example, [6], [14], [16], [17], [20], [23],
[33], [37]).

The functions ψ+ and f can be de�ned as follows:

ψ+(x, k) = eikx +

∫
Rd

G+(x− y, k)v(y)ψ+(y, k)dy, (2.3)

G+(x, k) = −
(

1

2π

)d ∫
Rd

eiξx

ξ2 − k2 − i0
dξ,

x, k ∈ Rd, k2 > 0,

(2.4)



8 M.I. Isaev and R.G. Novikov

where (2.3) at �xed k is considered as an equation for ψ+ in L∞(Rd);

f(k, l) =

(
1

2π

)d ∫
Rd

e−ilxψ+(x, k)v(x)dx,

k, l ∈ Rd, k2 > 0.

(2.5)

In addition: ψ+(x, k) satis�es (2.3) for E = k2 and describes scattering of the plane
waves eikx; f(k, l), k2 = l2, is the scattering amplitude for equation (2.1) for E = k2.
Equation (2.3) is the Lippman-Schwinger integral equation.

The functions ψ and h can be de�ned as follows:

ψ(x, k) = eikx +

∫
Rd

G(x− y, k)v(y)ψ(y, k)dy, (2.6)

G(x, k) = −
(

1

2π

)d ∫
Rd

eiξxdξ

ξ2 + 2kξ
eikx,

x ∈ Rd, k ∈ Cd, Im k ̸= 0,

(2.7)

where (2.6) at �xed k is considered as an equation for ψ = eikxµ(x, k), µ ∈ L∞(Rd);

h(k, l) =

(
1

2π

)d ∫
Rd

e−ilxψ(x, k)v(x)dx,

k, l ∈ Cd, Im k = Im l ̸= 0.

(2.8)

In addition, ψ(x, k) satis�es (2.1) for E = k2, and ψ, G and h are (nonanalytic)
continuations of ψ+, G+ and f to the complex domain. In particular, h(k, l) for k2 = l2

can be considered as the "scattering" amplitude in the complex domain for equation
(2.1) for E = k2. The functions ψγ and hγ are de�ned as follows:

ψγ(x, k) = ψ(x, k + i0γ), hγ(k, l) = h(k + i0γ, l + i0γ),

x, k, l, γ ∈ Rd, γ2 = 1.
(2.9)

We recall also that

ψ+(x, k) = ψk/|k|(x, k), f(k, l) = hk/|k|(k, l),

x, k, l ∈ Rd, |k| > 0.
(2.10)

We consider f(k, l) and hγ(k, l), where k, l, γ ∈ Rd, k2 = l2 = E, γ2 = 1, and h(k, l),
where k, l ∈ Cd, Im k = Im l ̸= 0, k2 = l2 = E, as scattering data SE for equation
(2.1) at �xed E ∈ (0,+∞). We consider h(k, l), where k, l ∈ Cd, Im k = Im l ̸= 0,
k2 = l2 = E, as scattering data SE for equation (2.1) at �xed E ∈ (−∞, 0].

We consider also the sets E , Eγ, E+ de�ned as follows:

E =

{
ζ ∈ Cd \ Rd : equation (2.6) for k = ζ is not

uniquely solvable for ψ = eikxµ with µ ∈ L∞(Rd)

}
, (2.11a)
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Eγ =
{
ζ ∈ Rd \ {0} : equation (2.6) for k = ζ + i0γ

is not uniquely solvable for ψ = L∞(Rd)

}
,

γ ∈ Sd−1,

(2.11b)

E+ =

{
ζ ∈ Rd \ {0} : equation (2.6) for k = ζ is not

uniquely solvable for ψ = L∞(Rd)

}
. (2.11c)

In addition, E+ is a well-known set of the classical scattering theory for equation
(2.1) and E+ = ∅ for real-valued v satisfying (2.2) (see, for example, [6], [33]). Note
also that E+ is spherically symmetric. The sets E , Eγ were considered for the �rst time
in [16], [17]. Concerning the properties of E and Eγ, see [17], [22], [23], [30], [33], [35],
[38], [52].

We consider also the functions R, Rγ, R
+ de�ned as follows:

R(x, y, k) = G(x− y, k) +

∫
Rd

G(x− z, k)v(z)R(z, y, k)dz,

x, y ∈ Rd, k ∈ Cd, Im k ̸= 0,

(2.12)

where G is de�ned by (2.7) and formula (2.12) at �xed y, k is considered as an equation
for

R(x, y, k) = eik(x−y)r(x, y, k), (2.13)

where r is sought with the properties

r(·, y, k) is continuous on Rd \ {y} (2.14a)

r(x, y, k) → 0 as |x| → ∞, (2.14b)

r(x, y, k) = O(|x− y|2−d) as x→ y for d ≥ 3,

r(x, y, k) = O(| ln |x− y||) as x→ y for d = 2;
(2.14c)

Rγ(x, y, k) = R(x, y, k + i0γ),

x, y ∈ Rd, k ∈ Rd \ {0}, γ ∈ Sd−1;
(2.15)

R+(x, y, k) = Rk/|k|(x, y, k),

x, y ∈ Rd, k ∈ Rd \ {0}.
(2.16)

In addition, the functions R(x, y, k), Rγ(x, y, k) and R
+(x, y, k) (for their domains of

de�nition in k and γ) satisfy the following equations:

(∆x + E − v(x))R(x, y, k) = δ(x− y),

(∆y + E − v(y))R(x, y, k) = δ(x− y),

x, y ∈ Rd, E = k2.

(2.17)

The function R+(x, y, k) (de�ned by means of (2.12) for k ∈ Rd \ {0} with G replaced
by G+ of (2.4)) is well-known in the scattering theory for equations (2.1), (2.17) (see,
for example, [7]). In particular, this function describes scattering of the spherical waves
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G+(x− y, k) generated by a source at y. In addition R+(x, y, k) is a radial function in
k, i.e.

R+(x, y, k) = R+(x, y, |k|), x, y ∈ Rd, k ∈ Rd \ {0}. (2.18)

Apparently, the functions R and Rγ were considered for the �rst time in [38].
In addition, under the assumption (2.2): equation (2.12) at �xed y and k is uniquely

solvable for R with the properties (2.13), (2.14) if and only if k ∈ Cd\(Rd∪E); equation
(2.12) with k = ζ + i0γ, ζ ∈ Rd \ {0}, γ ∈ Sd−1, at �xed y, ζ and γ is uniquely solvable
for Rγ if and only if ζ ∈ Rd\({0}∪Eγ); equation (2.12) with k = ζ+ i0ζ/|ζ|, ζ ∈ Rd\0,
at �xed y and ζ is uniquely solvable for R+ if and only if ζ ∈ Rd \ ({0} ∪ E+).

3 Main results

Let v and v0 satisfy (1.3), (1.7) for some �xed E and α. Let Mα,v(x, y, E),
Mα,v0(x, y, E), x, y ∈ ∂D, denote the Schwartz kernels of the impedance boundary

maps M̂α,v, M̂α,v0 , for potentials v and v
0, respectively, where M̂α,v, M̂α,v0 are consid-

ered as linear integral operators. In addition, we consider v0 as some known background
potential.

Let h, ψ, f , ψ+, hγ, ψγ, E , E+, Eγ and h0, ψ0, f 0, ψ+,0, h0γ, ψ
0
γ, E0, E+,0, E0

γ denote
the functions and sets of (2.3), (2.5), (2.6), (2.8), (2.9), (2.11) for potentials v and v0,
respectively. Here and bellow in this section we always assume that v ≡ 0, v0 ≡ 0 on
Rd \D.

Theorem 3.1. Let D satisfy (1.2) and potentials v, v0 satisfy (1.3), (1.7) for some
�xed E and α. Then:

h(k, l)− h0(k, l) =

=

(
1

2π

)d ∫
∂D

∫
∂D

[ψ0(x,−l)]α (Mα,v −Mα,v0) (x, y, E)[ψ(y, k)]αdx dy,

k, l ∈ Cd \ (E ∪ E0), k2 = l2 = E, Im k = Im l ̸= 0,

(3.1)

[ψ(x, k)]α = [ψ0(x, k)]α +

∫
∂D

Aα(x, y, k)[ψ(y, k)]αdy,

x ∈ ∂D, k ∈ Cd \ (E ∪ E0), Im k ̸= 0, k2 = E

(3.2)

where

Aα(x, y, k) = lim
ε→+0

∫
∂D

Dα,εR
0(x, ξ, k) (Mα,v −Mα,v0) (ξ, y, E)dξ, (3.3)

Dα,εR
0(x, ξ, k) = [[R0(x+ ενx, ξ, k)]ξ,α]x,α =

=

(
cos2 α− sinα cosα

(
∂

∂νx
+

∂

∂νξ

)
+ sin2 α

∂2

∂νx∂νξ

)
R0(x+ ενx, ξ, k),

x, ξ, y ∈ ∂D,

(3.4)

where R0 denotes the Green function of (2.12) for potential v0, νx is the outward
normal to ∂D at x. In addition, formulas completely similar to (3.1) - (3.4) are also
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valid for the classical scattering functions f , ψ+, f 0, ψ+,0 and sets E+, E+,0 of (2.3),
(2.5), (2.11c) for v and v0, respectively, but with R+,0 in place of R0 in (3.3), (3.4),
where R+,0 denotes the Green function of (2.16) for potential v0.

Theorem 3.1 is proved in Section 4.
Note that formula of the type (3.1) for hγ is not completely similar to (3.1): see

formula (3.6) given below. In this formula (3.6), in addition to expected ψγ(x, k), we
use also ψγ(x, k, l) de�ned as follows:

ψγ(x, k, l) = eilx +

∫
Rd

Gγ(x− y, k)v(y)ψγ(y, k, l)dy,

Gγ(x, k) = G(x, k + i0γ),

γ ∈ Sd−1, x, k, l ∈ Rd, k2 = l2 > 0,

(3.5)

where (3.5) at �xed γ, k, l is considered as an equation for ψγ(·, k, l) in L∞(Rd), G is
de�ned by (2.7).

Proposition 3.1. Let the asssumptions of Theorem 3.1 hold. Let ψγ(x, k) correspond
to v according to (2.9) and ψ0

−γ(·, k, l) correspond to v0 according to (3.5). Then

hγ(k, l)− h0γ(k, l) =

=

(
1

2π

)d ∫
∂D

∫
∂D

[ψ0
−γ(x,−k,−l)]α (Mα,v −Mα,v0) (x, y, E)[ψγ(y, k)]αdx dy,

γ ∈ Sd−1, k ∈ Rd \ ({0} ∪ Eγ ∪ E0
γ ), l ∈ Rd, k2 = l2 = E.

(3.6)

In addition, formulas completely similar to (3.2) - (3.4) are also valid for the functions
ψγ(x, k), ψ

0
γ(x, k) and sets Eγ, E0

γ of (2.9), (2.11b) for v and v0, respectively, but with
R0
γ in place of R0 in (3.3), (3.4), where R0

γ denotes the Green function of (2.15) for
potential v0.

Proposition 3.1 is proved in Section 4.
Note that (3.2) is considered as a linear integral equation for �nding [ψ(x, k)]α,

x ∈ ∂D, at �xed k, from M̂α,v − M̂α,v0 and [ψ0(x, k)]α, whereas (3.1) is considered as

an explicit formula for �nding h from h0, M̂α,v − M̂α,v0 , [ψ
0(x, k)]α and [ψ(x, k)]α. In

addition, we use similar interpretation for similar formulas for ψ+, f and for ψγ, hγ,
mentioned in Theorem 3.1 and Proposition 3.1.

Under the assumptions of Theorem 3.1, the following propositions are valid:

Proposition 3.2. Equation (3.2) for [ψ(x, k)]α at �xed k ∈ Cd\(Rd∪E0) is a Fredholm
linear integral equation of the second kind in the space of bounded functions on ∂D.
In addition, the same is also valid for the equation for [ψ+(x, k)]α at �xed k ∈ Rd \
({0} ∪ E+,0), mentioned in Theorem 3.1, and for the equation for [ψγ(x, k)]α at �xed
γ ∈ Sd−1, k ∈ Rd \ ({0} ∪ E0

γ ), mentioned in Proposition 3.1.

Proposition 3.2 is proved in Section 4.
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Proposition 3.3. For k ∈ Cd \ (Rd ∪ E0) equation (3.2) is uniquely solvable in the
space of bounded functions on ∂D if and only if k /∈ E. In addition, the aforementioned
equations for [ψ+(x, k)]α, k ∈ Rd \ ({0} ∪ E+,0), and [ψγ(x, k)]α, γ ∈ Sd−1, k ∈ Rd \
({0} ∪ E0

γ ), are uniquely solvable in the space of bounded functions on ∂D if and only
if k /∈ E+ and k /∈ Eγ, respectively.

Proposition 3.3 is proved in Section 5.

Proposition 3.4. Let ϕα(x, y) be the solution of the Dirichlet boundary value problem
at �xed y ∈ ∂D, λ ∈ C:

−∆xϕα(x, y) = λϕα(x, y), x ∈ D,

ϕα(x, y) = (Mα,v −Mα,v0) (x, y, E), x ∈ ∂D,
(3.7)

where we assume that λ is not a Dirichlet eigenvalue for −∆ in D. Then

Aα(x, y, k) = lim
ε→+0

∫
∂D

[R0(x+ ενx, ξ, k)]x,α[ϕα(ξ, y)]ξ,αdξ−

− sinα

∫
D

[R0(x, ξ, k)]x,α(v
0(ξ)− E + λ)ϕα(ξ, y)dξ, x, y ∈ ∂D,

(3.8)

where

[R0(x+ ενx, ξ, k)]x,α =

(
cosα− sinα

∂

∂νx

)
R0(x+ ενx, ξ, k), x ∈ ∂D, ξ ∈ D̄, (3.9)

[ϕα(ξ, y)]ξ,α =

(
cosα− sinα

∂

∂νξ

)
ϕα(ξ, y) =

= cosαϕα(ξ, y)− sinα
(
Φ̂(λ)ϕα(·, y)

)
(ξ), ξ, y ∈ ∂D,

(3.10)

where Aα is de�ned in (3.3), Φ̂(λ) = M̂0,0(λ) is the Dirichlet-to-Neumann map for
(3.7). In addition, formulas completely similar to (3.8) are also valid for the kernels
A+
α (but with R+

0 in place of R0) and Aα,γ (but with R0
γ in place of R0), arising in the

equations for [ψ+]α and [ψγ]α, mentioned in Theorem 3.1 and Proposition 3.1.

Proposition 3.4 is proved in Section 4.
Note that, for the case when sinα = 0, formula (3.8) coincides with (3.3). However,

for sinα ̸= 0, formula (3.8) does not contain ∂2R0/∂νx∂νξ in contrast with (3.3) and
is more convenient than (3.3) in this sense.

Theorem 3.1, Propositions 3.1 - 3.4 and the reconstruction results from generalized
scattering data (see [20], [21], [23], [37]-[39], [41]-[43], [47]) imply the following corollary:

Corollary 3.1. To reconstruct a potential v in the domain D from its impedance
boundary map M̂α,v(E) at �xed E and α one can use the following schema:

1. v0 → {S0
E}, {R0}, {[ψ0]α}, M̂α,v0 via direct problem methods,

2. {R0}, M̂α,v0 , M̂α,v → {Aα} as described in Theorem 3.1 and Propositions 3.1, 3.4,
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3. {Aα}, {[ψ0]α} → {[ψ]α} as described in Theorem 3.1 and Proposition 3.1,

4. {S0
E}, {[ψ0]α}, {[ψ]α}, M̂α,v0 , M̂α,v → {SE} as described in Theorem 3.1 and

Proposition 3.1,

5. {SE} → v as described in [20], [21], [23], [37]-[39], [41]-[43], [47],

where {S0
E} and {SE} denote some appropriate part of h0, f 0, h0γ and h, f , hγ, re-

spectively, {[ψ0]α} and {[ψ]α} denote some appropriate part of [ψ0]α, [ψ
+,0]α, [ψ

0
γ]α and

[ψ]α, [ψ
+]α, [ψγ]α, respectively, {R0}, {Aα} denote some appropriate part of R0, R+,0,

R0
γ, Aα, A

+
α , Aα,γ.

Remark 1. For the case when v0 ≡ 0, sinα = 0, Theorem 3.1, Propositions 3.1 - 3.3
and Corollary 3.1 (with available references at that time at step 5) were obtained in
[36] (see also [34], [35]). Note that basic results of [36] were presented already in the
survey given in [23]. For the case when sinα = 0 Theorem 3.1, Propositions 3.1 - 3.3
and Corollary 3.1 (with available references at that time at step 5) were obtained in
[40].

Remark 2. The results of Theorem 3.1, Propositions 3.1 - 3.4 and Corollary 3.1
remain valid for complex-valued v, v0 and complex E, α, under the condition that (1.7)
holds for both v and v0.

Remark 3. Under the assumptions of Theorem 3.1, the following formula holds:

M̂α,v(E)− M̂α,v0(E) = (DαR
+,0(E))−1 − (DαR

+(E))−1, (3.11)

DαR
+(E)u(x) = lim

ε→+0

∫
∂D

Dα,εR
+(x, y,

√
E)u(y)dy,

DαR
+,0(E)u(x) = lim

ε→+0

∫
∂D

Dα,εR
+,0(x, y,

√
E)u(y)dy,

x ∈ ∂D,

(3.12)

where Dα,ε is de�ned as in (3.4), R+(x, y,
√
E), R+,0(x, y,

√
E),

√
E > 0, are the Green

functions of (2.16) written as in (2.18) for potentials v, v0, respectively, u is the test
function. For the case when sinα = 0, v0 ≡ 0, d ≥ 3, formula (3.11) was given in
[34]. Using techniques developed in [26] and in the present work, we obtain (3.11) in
the general case.

4 Proofs of Theorem 3.1 and Propositions 3.1, 3.2, 3.4

In this section we will use formulas and equations for impedance boundary map from
[26]. These results are presented in detail in Subsection 4.1. Proofs of Theorem 3.1
and Propositions 3.1, 3.2, 3.4 are given in Subsections 4.2, 4.3.
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4.1 Preliminaries

Let Gα,v(x, y, E) be the Green function for the operator ∆ − v + E in D with the
impedance boundary condition (1.6) under assumptions (1.2), (1.3) and (1.7). We
recall that (see formulas (3.12), (3.13) of [26]):

Gα,v(x, y, E) = Gα,v(y, x, E), x, y ∈ D̄, (4.1)

and, for sinα ̸= 0,

Mα,v(x, y, E) =
1

sin2 α
Gα,v(x, y, E)− cosα

sinα
δ∂D(x− y), x, y ∈ ∂D, (4.2)

whereMα(x, y, E) and δ∂D(x−y) denote the Schwartz kernels of the impedance bound-
ary map M̂α,v(E) and the identity operator Î on ∂D, respectively, where M̂α and Î are
considered as linear integral operators.

We recall also that (see, for example, formula (3.16) of [26]):

ψ(x) =
1

sinα

∫
∂D

(cosαψ(ξ)− sinα
∂

∂ν
ψ(ξ))Gα,v(x, ξ, E)dξ, x ∈ D, (4.3)

for all su�ciently regular solutions ψ of equation (1.1) in D̄ and sinα ̸= 0.
We will use the following properties of the Green function Gα(x, y, E):

Gα,v(x, y, E) is continuous in x, y ∈ D̄, x ̸= y, (4.4)

|Gα,v(x, y, E)| ≤ c1(|x− y|2−d), x, y ∈ D̄, for d ≥ 3,

|Gα,v(x, y, E)| ≤ c1(| ln |x− y||), x, y ∈ D̄, for d = 2,
(4.5)

where c1 = c1(D,E, v, α) > 0.
Actually, properties (4.4), (4.5) are well-known for sinα = 0 (the case of the Di-

rechlet boundary condition) and for cosα = 0 (the case of the Neumann boundary
condition). Properties (4.4), (4.5) with d ≥ 3, sinα

cosα
< 0, v ≡ 0 and E = 0 were proven

in [29]. For d = 2 see also [5]. In Section 6 we give proofs of (4.4), (4.5) for the case of
general α, v and E.

In addition, under assumptions of Theorem 3.1, the following identity holds (see
formula (3.9) of [26]):∫

D

(v − v0)ψψ0dx =

∫
∂D

[ψ]α

(
M̂α,v − M̂α,v0

)
[ψ0]αdx (4.6)

for all su�ciently regular solutions ψ, ψ0 of equation (1.1) in D̄ for potentials v, v0,
respectively, where [ψ]α, [ψ

0]α are de�ned according to (1.5).
Identity (4.6) for sinα = 0 is reduced to the Alessandrini identity (Lemma 1 of [1]).
We will use also that:

∥R̂(k)u∥C1+δ(Ω) ≤ c2(D,Ω, v, k, δ)∥u∥L∞(D),

R̂(k)u(x) =

∫
D

R(x, y, k)u(y)dy, x ∈ Ω,

k ∈ Cd \ (Rd ∪ E),

(4.7a)
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∥R̂γ(k)u∥C1+δ(Ω) ≤ c3(D,Ω, v, k, γ, δ)∥u∥L∞(D),

R̂γ(k)u(x) =

∫
D

Rγ(x, y, k)u(y)dy, x ∈ Ω,

γ ∈ Sd−1, k ∈ Rd \ ({0} ∪ Eγ),

(4.7b)

for u ∈ L∞(D), δ ∈ [0, 1), where Ω is such an open bounded domain in Rd that D̄ ⊂ Ω
and C1+δ denotes C1 with the �rst derivatives belonging to the H�older space Cδ.

We will use also the Green formula:∫
∂D

(
ϕ1
∂ϕ2

∂ν
− ϕ2

∂ϕ1

∂ν

)
dx =

∫
D

(ϕ1∆ϕ2 − ϕ2∆ϕ1) dx, (4.8)

where ϕ1 and ϕ2 are arbitrary su�ciently regular functions in D̄.

4.2 Proof of Theorem 3.1 and Proposition 3.1

For the case when sinα = 0, Theorem 3.1 and Proposition 3.1 were proved in [40]. In
this subsection we generalize the proof of [40] to the case sinα ̸= 0. We proceed from
the following formulas and equations (being valid under assumption (2.2) on v0 and
v):

h(k, l)− h0(k, l) =

(
1

2π

)d ∫
Rd

ψ0(x,−l)(v(x)− v0(x))ψ(x, k)dx,

k, l ∈ Cd \ (E0 ∪ E), k2 = l2, |Im k| = |Im l| ≠ 0,

(4.9)

ψ(x, k) = ψ0(x, k) +

∫
Rd

R0(x, y, k)(v(y)− v0(y))ψ(y, k)dy,

x ∈ Rd, k ∈ Cd \ (Rd ∪ E0),

(4.10)

where (4.10) at �xed k is considered as an equation for ψ = eikxµ(x, k) with µ ∈
L∞(Rd);

f(k, l)− f 0(k, l) =

(
1

2π

)d ∫
Rd

ψ+,0(x,−l)(v(x)− v0(x))ψ+(x, k)dx,

k, l ∈ Rd \ ({0} ∪ E+,0 ∪ E+), k2 = l2,

(4.11)

ψ+(x, k) = ψ+,0(x, k) +

∫
Rd

R+,0(x, y, k)(v(y)− v0(y))ψ+(y, k)dy,

x ∈ Rd, k ∈ Rd \ ({0} ∪ E+,0),

(4.12)

where (4.12) at �xed k is an equation for ψ+ ∈ L∞(Rd);
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hγ(k, l)− h0γ(k, l) =

(
1

2π

)d ∫
Rd

ψ0
−γ(x,−k,−l)(v(x)− v0(x))ψγ(x, k)dx,

γ ∈ Sd−1, k ∈ Rd \ (E0
γ ∪ Eγ), l ∈ Rd, k2 = l2,

(4.13)

ψγ(x, k) = ψ0
γ(x, k) +

∫
Rd

R0
γ(x, y, k)(v(y)− v0(y))ψγ(y, k)dy,

x ∈ Rd, γ ∈ Sd−1, k ∈ Rd \ ({0} ∪ E0
γ ),

(4.14)

where (4.14) at �xed γ and k is considered as an equation for ψγ ∈ L∞(Rd).
We recall that ψ+, f , ψ, h, ψγ, hγ were de�ned in Sections 2, 3 by means of (2.3)

- (2.9), (3.5). Equation (4.12) is well-known in the classical scattering theory for the
Schr�odinger equation (2.1). Formula (4.11) was given, in particular, in [50]. To our
knowledge formula and equations (4.9), (4.10), (4.14) were given for the �rst time in
[38], whereas formula (4.13) was given for the �rst time in [40].

In addition, under assumption (2.2) on v0 and v:

equation (4.10) at �xed k ∈ Cd \ (Rd ∪ E0) is uniquely solvable

for ψ = eikxµ(x, k) with µ ∈ L∞(Rd) if and only if k /∈ E ;
(4.15a)

equation (4.12) at �xed k ∈ Rd \ ({0} ∪ E+,0) is uniquely

solvable for ψ+ ∈ L∞(Rd) if and only if k /∈ E+;
(4.15b)

equation (4.14) at �xed γ ∈ Sd−1 and k ∈ Rd \ ({0} ∪ E+
γ )

is uniquely solvable for ψγ ∈ L∞(Rd) if and only if k /∈ Eγ.
(4.15c)

Let us prove Theorem 3.1 for the case of the Faddeev functions ψ, h. The proof of
Theorem 3.1 for the case of ψ+, f and the proof of Proposition 3.1 are similar.

Note that formula (3.1) follows directly from (4.6) and (4.9).
Using (2.17) and applying (4.6) for equation (4.10), we get that

ψ(x, k)− ψ0(x, k) =

∫
∂D

∫
∂D

[R0(x, ξ, k)]ξ,α (Mα,v −Mα,v0) (ξ, y, E)[ψ(y, k)]αdξdy,

x ∈ Rd \ D̄,
(4.16)

where

[R0(x, ξ, k)]ξ,α =

(
cosα− sinα

∂

∂νξ

)
R0(x, ξ, k). (4.17)

Equation (3.2) follows from formula (4.16), de�nition (1.5) and the property that

lim
ε→+0

(
cosα− sinα

∂

∂νx

)
u(x+ ενx) = [u(x)]α, x ∈ ∂D, (4.18)

for u(x) = ψ(x, k)− ψ0(x, k).
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4.3 Proofs of Propositions 3.2 and 3.4

In this subsection we prove Propositions 3.2, 3.4 for the case of equation (3.2) for [ψ]α.
The proofs of Propositions 3.2 and 3.4 for the cases of ψ+ and ψγ are absolutely similar.

Proof. Proposition 3.2. The proof of Proposition 3.2 for the case of sinα = 0 was given
in [40]. Let us assume that sinα ̸= 0.

Using (4.2), we �nd that

(Mα,v −Mα,v0) (ξ, y, E) =
1

sin2 α
(Gα,v −Gα,v0) (ξ, y, E), ξ, y ∈ ∂D. (4.19)

Using (2.17), (4.1), (4.8) and the impedance boundary condition (1.6) for Gα,v, Gα,v0 ,
we get that∫
∂D

[R0(x, ξ, k)]α,ξ(Gα,v−Gα,v0)(ξ, y, E)dξ =

=

∫
∂D

(
[R0(x, ξ, k)]α,ξ (Gα,v −Gα,v0) (ξ, y, E)dξ−

−R0(x, ξ, k)[(Gα,v −Gα,v0) (ξ, y, E)]α,ξ

)
dξ =

= sinα

∫
D

(
R0(x,ξ, k)∆ξ (Gα,v −Gα,v0) (ξ, y, E)dξ−

− (Gα,v −Gα,v0) (ξ, y, E)∆ξR
0(x, ξ, k)

)
dξ =

= sinα

∫
D

R0(x, ξ, k)
(
v(ξ)− v0(ξ)

)
Gα,v(ξ, y, E)dξ, x ∈ Rd \ D̄, y ∈ ∂D.

(4.20)

Combining (4.16), (4.19) and (4.20), we obtain that

Aα(x, y, k) = lim
ε→+0

(
cosα− sinα

∂

∂νx

)
Bα(x+ ενx, y, k), x, y ∈ ∂D, (4.21)

where

Bα(x, y, k) =

∫
∂D

[R0(x, ξ, k)]α,ξ(Mα,v −Mα,v0)(ξ, y, E)dξ =

=
1

sinα

∫
D

R0(x, ξ, k)
(
v(ξ)− v0(ξ)

)
Gα,v(ξ, y, E)dξ,

x ∈ Rd \ D̄, y ∈ ∂D.

(4.22)

Thus, we have that the limit in (4.21) (and, hence, in (3.3)) is well de�ned and

Aα(x, y, k) =
1

sinα

∫
D

[R0(x, ξ, k)]x,α
(
v(ξ)− v0(ξ)

)
Gα,v(ξ, y, E)dξ, x, y ∈ ∂D. (4.23)
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Let Âα(k) denote the linear integral operator on ∂D with the Schwartz kernel
Aα(x, y, k) of (3.3), (4.23). Using (4.5), (4.7), (4.23), we obtain that

Âα(k) : L∞(∂D) → Cδ(∂D)

is a bounded linear operator.
(4.24)

As a corollary of (4.24), Âα(k) is a compact operator in L∞(D). �

Proof. Proposition 3.4. Using (2.17), (3.7) and (4.8), we get that∫
∂D

(
ϕα(ξ, y)

∂

∂νξ
R0(x, ξ, k)−R0(x, ξ, k)

∂

∂νξ
ϕα(ξ, y)

)
dξ =

=

∫
D

(
ϕα(ξ, y)∆ξR

0(x, ξ, k)−R0(x, ξ, k)∆ξϕα(ξ, y)
)
dξ =

=

∫
D

R0(x, ξ, k)(v0(ξ)− E + λ)ϕα(ξ, y)dξ,

x ∈ Rd \ D̄, y ∈ ∂D.

(4.25)

Combining (3.7), (4.22) and (4.25), we �nd that

Bα(x, y, k) =

∫
∂D

[R0(x, ξ, k)]ξ,αϕα(ξ, y)dξ =

=

∫
∂D

R0(x, ξ, k)[ϕα(ξ, y)]ξ,αdξ − sinα

∫
D

R0(x, ξ, k)(v0(ξ)− E + λ)ϕα(ξ, y)dξ,

x ∈ Rd \ D̄, y ∈ ∂D.

(4.26)

Combining (4.21) and (4.26), we obtain (3.8).
Formula (3.10) follows from (3.7) and the de�nition of Φ̂.
�

5 Proof of Proposition 3.3

For the case when sinα = 0, Proposition 3.3 was proved in [40]. In this section we
prove Proposition 3.3 for sinα ̸= 0. We will prove Proposition 3.3 for the case of
equation (3.2) for [ψ]α. The proofs for the cases of ψ

+ and ψγ are similar.
According to (4.15), to prove Proposition 3.3 (for the case of ψ) it is su�cient

to show that equation (3.2) (at �xed k ∈ Cd \ (Rd ∪ E0)) is uniquely solvable in the
space of bounded functions on ∂D if and only if equation (4.10) is uniquely solvable
for ψ = eikxµ(x, k) with µ ∈ L∞(Rd).

Let equation (4.10) have several solutions. Then, repeating the proof of Theorem
3.1 separately for each solution, we �nd that [ψ]α on ∂D for each of these solutions
satis�es equation (3.2). Thus, using also (1.7) we obtain that equation (3.2) has at
least as many solutions as equation (4.10).
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To prove the converse (and thereby to prove Proposition 3.3) it remains to show
that any solution [ψ]α of (3.2) can be continued to a continuos solution of (4.10).

Let ψ be the solution of (1.1) with the impedance boundary data [ψ]α, satisfying
(3.2). Let

ψ1(x) = ψ0(x, k) +

∫
D

R0(x, y, k)(v(y)− v0(y))ψ(y)dy, x ∈ Rd. (5.1)

Using (4.7), we obtain that

ψ1 de�ned by (5.1) belongs to C1+δ(Rd), δ ∈ [0, 1). (5.2)

We have that

(−∆+ v0(x)− E)ψ(x) = (v0(x)− v(x))ψ(x), x ∈ D, (5.3)

(−∆+ v0(x)− E)ψ1(x) =

∫
D

−δ(x− y)(v(y)− v0(y))ψ(y)dy =

= (v0(x)− v(x))ψ(x), x ∈ D.

(5.4)

Combining (4.6) and (4.22), we get that∫
D

R0(x, y, k)(v(y)− v0(y))ψ(y)dy =

∫
∂D

Bα(x, y, k)[ψ(y)]αdy, x ∈ Rd \ D̄. (5.5)

Using (3.2), (4.21), (5.2), (5.5), we �nd that

[ψ1(x)]α = [ψ0(x, k)]α +

∫
∂D

Aα(x, y, k)[ψ(y)]αdy = [ψ(x)]α, x ∈ ∂D. (5.6)

Using (5.3), (5.4) and (5.6), we obtain that

(−∆+ v0(x)− E)(ψ1(x)− ψ(x)) = 0, x ∈ D,

[ψ1(x)− ψ(x)]α = 0, x ∈ ∂D.
(5.7)

Since v0 satis�es (1.7), we get that

ψ1(x) = ψ(x), x ∈ D̄. (5.8)

Combining (5.1), (5.2) and (5.8), we �nd that ψ1 is a continuos solution of (4.10).

6 Proofs of properties (4.4), (4.5)

As it was mentioned in Subsection 4.1, properties (4.4), (4.5) are well-known for cosα =
0 (the case of the Neumann boundary condition). To extend these properties to the
case of general α, v, E, we use the following schema:
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1. Gα1,v → Gα2,v by means of Lemma 6.1 given bellow (with sinα1 ̸= 0 and sinα2 ̸=
0),

2. Gα,v1 → Gα,v2 by means of Lemma 6.2 given bellow.

The proofs of steps 1, 2 are based on the theory of Fredholm linear integral equations
of the second kind.

Starting from (4.4), (4.5) for cosα = 0 and combining steps 1, 2 and the property

Gα,v(·, ·, E) = Gα,v−E(·, ·, 0), (6.1)

we obtain these properties for the case when sinα ̸= 0.
As it was already mentioned in Section 4, properties (4.4), (4.5) are well-known for

sinα = 0 (the case of the Dirichlet boundary condition).

Lemma 6.1. Let D satisfy (1.2) and potential v satisfy (1.3), (1.7) for some �xed E
and for α = α1, α = α2 simultaneously, where sinα1 ̸= 0 and sinα2 ̸= 0. Let Gj denote
the Green function Gαj ,v, j = 1, 2. Let G1 satisfy:

G1(x, y, E) is continuous in x, y ∈ D̄, x ̸= y, (6.2)

|G1(x, y, E)| ≤ a1|x− y|2−d for d ≥ 3,

|G1(x, y, E)| ≤ a1| ln |x− y|| for d = 2,

x, y ∈ D̄.

(6.3)

Then:
G2(x, y, E) is continuous in x, y ∈ D̄, x ̸= y, (6.4)

|G2(x, y, E)| ≤ a2|x− y|2−d for d ≥ 3,

|G2(x, y, E)| ≤ a2| ln |x− y|| for d = 2,

x, y ∈ D̄,

(6.5)

where a2 = a2(D,E, a1, v, α1, α2) > 0.

Proof. Lemma 6.1. First, we derive formally some formulas and equations relating the
Green functions G1 and G2. Then, proceeding from these formulas and equations, we
obtain, in particular, estimates (6.4), (6.5).

ConsiderW = G2−G1. Using de�nitions of G1, G2 and formula (4.3), we �nd that:

(−∆x + v(x)− E)W (x, y) = 0, x, y ∈ D, (6.6)(
cosα2W (x, y)− sinα2

∂W

∂νx
(x, y)

)∣∣∣
x∈∂D

=

= −
(
cosα2G1(x, y, E)− sinα2

∂G1

∂νx
(x, y, E)

)∣∣∣
x∈∂D

=

= −
(
cosα2G1(x, y, E)− sinα2

cosα1

sinα1

G1(x, y, E)

)∣∣∣
x∈∂D

=

=
sin(α2 − α1)

sinα1

G1(x, y, E)
∣∣∣
x∈∂D

, y ∈ D,

(6.7)
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W (x, y) =
1

sinα1

∫
∂D

(
cosα1W (ξ, y)− sinα1

∂W

∂νξ
(ξ, y)

)
G1(ξ, x, E)dξ, x, y ∈ D.

(6.8)
Using (6.7) and (6.8), we �nd the following linear integral equation for W (·, y) on ∂D:

W (·, y) = W0(·, y) + K̂1W (·, y), y ∈ D, (6.9)

where

W0(x, y) =
sin(α2 − α1)

sinα2

∫
∂D

G1(ξ, x, E)G1(ξ, y, E)dξ, (6.10)

K̂1u(x) =
sin(α2 − α1)

sinα2 sinα1

∫
∂D

G1(ξ, x, E)u(ξ)dξ,

x ∈ ∂D, y ∈ D, u is a test function.

(6.11)

In addition, for

δnW = W −
n∑
j=1

(K̂1)
j−1W0 (6.12)

equation (6.9) takes the form

δnW = (K̂1)
nW0 + K̂1δnW. (6.13)

Our analysis based on (6.6)-(6.13) is given bellow.
Using (6.2), (6.3), we obtain that

(K̂1)
nW0 ∈ C(∂D × D̄) for su�ciently great n with respect to d, (6.14)

K̂1 is a compact operator in C(∂D). (6.15)

Let us show that the homogeneous equation

u = K̂1u, u ∈ C(∂D), (6.16)

has only trivial solution u ≡ 0.
Using the fact that the potential v satisfy (1.7) for α = α1, we de�ne ψ by

(−∆+ v(x)− E)ψ(x) = 0, x ∈ D,

cosα1ψ|∂D − sinα1
∂ψ

∂ν
|∂D = u.

(6.17)

Due to (4.3), we have that

ψ(x) =
1

sinα1

∫
∂D

(cosα1ψ(ξ)− sinα1
∂ψ

∂ν
(ξ))G1(ξ, x, E)dξ, x ∈ D. (6.18)

Using (6.16), (6.18), we �nd that

sin(α2 − α1)

sinα2

ψ(x) = K̂1u(x) = u(x), x ∈ ∂D. (6.19)
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Therefore, we have that

cosα1ψ(x)− sinα1
∂ψ

∂ν
(x) =

sin(α2 − α1)

sinα2

ψ(x), x ∈ ∂D. (6.20)

Since sinα1 ̸= 0 and sinα2 ̸= 0, using (6.20), we obtain that

cosα2ψ(x)− sinα2
∂ψ

∂ν
(x) = 0 (6.21)

Taking into account the fact that the potential v satisfy (1.7) for α = α2, we get that
ψ ≡ 0 and u ≡ 0.

Proceeding from

F = W (x, y) and F ′ =
cosα2

sinα2

W (x, y)− sin(α2 − α1)

sinα1 sinα2

G1(x, y, E),

x ∈ ∂D, y ∈ D̄,

(6.22)

found from (6.9), (6.13) and (6.7) (with F ′ substituted in place of ∂W/∂νx), we consider

W (x, y) =
1

sinα1

∫
∂D

(
cosα1F (ξ, y)− sinα1F

′(ξ, y)
)
G1(ξ, x, E)dξ, x, y ∈ D̄. (6.23)

Using (6.9) and properties of G1 (including formula (4.3)), we subsequently obtain that

lim
ε→+0

W (x− ενx, y) = F (x, y), x ∈ ∂D, y ∈ D̄, (6.24)

W satis�es (6.6), (6.25)

lim
ε→+0

∂

∂νx
W (x− ενx, y) = F ′(x, y), x ∈ ∂D, y ∈ D̄. (6.26)

From (6.2), (6.3), (6.10)-(6.16), (6.24)-(6.26) it follows that G2 de�ned as G2 =
G1 +W is the Green function for the operator ∆ − v + E in D with the impedance
boundary condition (1.6) for α = α2 and that G2 satis�es (6.4), (6.5). �
Lemma 6.2. Let D satisfy (1.2) and potentials v1, v2 satisfy (1.3), (1.7) for some
�xed E and α. Let Gj denote the Green function Gα,vj , j = 1, 2. Let G1 satisfy:

G1(x, y, E) is continuous in x, y ∈ D̄, x ̸= y, (6.27)

|G1(x, y, E)| ≤ a3|x− y|2−d for d ≥ 3,

|G1(x, y, E)| ≤ a3| ln |x− y|| for d = 2,

x, y ∈ D̄.

(6.28)

Then:
G2(x, y, E) is continuous in x, y ∈ D̄, x ̸= y, (6.29)

|G2(x, y, E)| ≤ a4|x− y|2−d for d ≥ 3,

|G2(x, y, E)| ≤ a4| ln |x− y|| for d = 2,

x, y ∈ D̄,

(6.30)

where a4 = a4(D,E, a3, v1, v2, α) > 0.
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Proof. Lemma 6.2. First, we derive formally some formulas and equations relating the
Green functions G1 and G2. Then, proceeding from these formulas and equations, we
obtain, in particular, estimates (6.29), (6.30).

Using (4.1), the impedance boundary condition for G1, G2, we �nd that

G1(x, y, E) =

∫
D

G1(x, ξ, E)
(
∆ξ − v2(ξ) + E

)
G2(ξ, y, E) dξ,

G2(x, y, E) =

∫
D

G2(ξ, y, E)
(
∆ξ − v1(ξ) + E

)
G1(x, ξ, E) dξ,

∫
∂D

(
G1(x, ξ, E)

∂G2

∂νξ
(ξ, y, E)−G2(ξ, y, E)

∂G1

∂νξ
(x, ξ, E)

)
dξ = 0,

x, y ∈ D.

(6.31)

Combining (6.31) with (4.8), we get that

G2(·, y, E)−G1(·, y, E) = K̂2G2(·, y, E), y ∈ D, (6.32)

where

K̂2u(x) =

∫
D

(v2(ξ)− v1(ξ))G1(x, ξ, E)u(ξ)dξ. (6.33)

In addition, for

δnG = G2 −
n∑
j=1

(K̂2)
j−1G1 (6.34)

equation (6.32) takes the form

δnG = (K̂2)
nG1 + K̂2δnG. (6.35)

Our analysis based on (6.31)-(6.35) is given bellow.
Using (6.27), (6.28), we �nd that

(K̂2)
nG1 ∈ C(D̄ × D̄) for su�ciently great n with respect to d, (6.36)

K̂2 is a compact operator in C(D̄). (6.37)

Let us show that the homogeneous equation

u = K̂2u, u ∈ C(D̄), (6.38)

has only trivial solution u ≡ 0. Using (6.33), (6.38) and properties of the Green
function G1, we �nd that

(−∆+ v1(x)− E)u(x) =

∫
D

−δ(x− ξ) (v2(ξ)− v1(ξ))u(ξ)dξ =

= (v1 − v2)u(x), x ∈ D,

cosαu(x)− sinα
∂u

∂ν
(x) = 0, x ∈ ∂D.

(6.39)
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Using (6.27), (6.28), we �nd that u ∈ C(D̄). Taking into account the fact that the
potential v2 satisfy (1.7), we get that u ≡ 0.

Proceeding from (6.27), (6.28), (6.36), (6.37) it follows that G2 found from (6.32),
(6.35) is the Green function for the operator ∆ − v + E in D with the impedance
boundary condition (1.6) for v = v2 and that G2 satis�es (6.29), (6.30). �
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